Page 1960 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1960

Chapter 113  Human Leukocyte Antigen and Human Neutrophil Antigen Systems  1737.e3


             95.  Moretta  L,  Moretta  A:  Killer  immunoglobulin-like  receptors.  Curr   119.  Marincola  FM:  Possible  biases  in  referral  pattern  to  NIH  and  their
                Opin Immunol 16(5):626–633, 2004.                     effect  on  HLA  association  studies.  J  Immunother  Emphasis  Tumor
             96.  Middleton D, Williams F, Halfpenny IA: KIR genes. Transpl Immunol   Immunol 19:384, 1996.
                14(3–4):135–142, 2005.                            120.  Cormier JN, Salgaller ML, Prevette T, et al: Enhancement of cellular
             97.  Vilches  C,  Parham  P:  KIR:  diverse,  rapidly  evolving  receptors  of   immunity  in  melanoma  patients  immunized  with  a  peptide  from
                innate  and  adaptive  immunity.  Ann  Rev  Immunol  20:217–251,   MART-1/Melan A. Cancer J Sci Am 3(1):37–44, 1997.
                2002.                                             121.  Hopkins KA vLA, Tardiff GN, et al: Lymphocytoxocity testing. In In
             98.  Ruggeri L, Capanni M, Urbani E, et al: Effectiveness of donor natural   Zachary AATG, editor: ASHI Laboratory Manual, ed 2, Lenexa, Kans,
                killer  cell  alloreactivity  in  mismatched  hematopoietic  transplants.   1990, p 195.
                Science 295(5562):2097–2100, 2002.                122.  Sakaguchi   K,   Ono   R,   Tsujisaki   M,   et al:   Anti-HLA-
             99.  Gagne K, Brizard G, Gueglio B, et al: Relevance of KIR gene poly-  B7,B27,Bw42,Bw54,Bw55,Bw56,  Bw67,Bw73  monoclonal  antibod-
                morphisms in bone marrow transplantation outcome. Hum Immunol   ies:  specificity,  idiotypes,  and  application  for  a  double  determinant
                63(4):271–280, 2002.                                  immunoassay. Hum Immunol 21(3):193–207, 1988.
            100.  Falkenburg JH, Marijt WA, Heemskerk MH, et al: Minor histocompat-  123.  Yunis EJWE, Amos DB: Observation of the CYNAP phenomenon. In
                ibility antigens as targets of graft-versus-leukemia reactions. Curr Opin   In Terasaki IP e, editor: Histocompatibility 1970, 1970, p 351.
                Hematol 9(6):497–502, 2002.                       124.  Scornik  JC,  Brunson  ME,  Schaub  B,  et al: The  crossmatch  in  renal
            101.  Klein CA, Wilke M, Pool J, et al: The hematopoietic system-specific   transplantation.  Evaluation  of  flow  cytometry  as  a  replacement  for
                minor histocompatibility antigen HA-1 shows aberrant expression in   standard cytotoxicity. Transplantation 57(4):621–625, 1994.
                epithelial cancer cells. J Exp Med 196(3):359–638, 2002.  125.  Buelow R, Chiang TR, Monteiro F, et al: Soluble HLA antigens and
            102.  Jin P, Wang E: Polymorphism in clinical immunology – From HLA   ELISA–a  new  technology  for  crossmatch  testing.  Transplantation
                typing to immunogenetic profiling. J Transl Med 1(1):8, 2003.  60(12):1594–1599, 1995.
            103.  LJ K. The study of polymorphism in cytokine and cytokine receptor genes.   126.  Christiaans MH, Nieman F, van Hooff JP, et al: Detection of HLA class
                2002.                                                 I and II antibodies by ELISA and complement-dependent cytotoxic-
            104.  McCarron SL, Edwards S, Evans PR, et al: Influence of cytokine gene   ity  before  and  after  transplantation.  Transplantation  69(5):917–927,
                polymorphisms  on  the  development  of  prostate  cancer.  Cancer  Res   2000.
                62(12):3369–3372, 2002.                           127.  Marrari  MDR:  Interlaboratory  comparisons  of  serum  screening  for
            105.  Howell  WM,  Turner  SJ,  Bateman  AC,  et al:  IL-10  promoter  poly-  HLA antibody determination and crossmatching by ELISA and flow
                morphisms  influence  tumour  development  in  cutaneous  malignant   cytometry methods. In. Hum Immunol 2002.
                melanoma. Genes Immun 2(1):25–31, 2001.           128.  Pei R, Lee J, Chen T, et al: Flow cytometric detection of HLA antibod-
            106.  Bodmer WF: HLA: what’s in a name? A commentary on HLA nomen-  ies using a spectrum of microbeads. Hum Immunol 60(12):1293–1302,
                clature development over the years. Tissue Antigens 49(3 Pt 2):293–296,   1999.
                1997.                                             129.  Moses  LA,  Stroncek  DF,  Cipolone  KM,  et al:  Detection  of  HLA
            107.  Tiercy JM, Marsh SG, Schreuder GM, et al: Guidelines for nomencla-  antibodies by using flow cytometry and latex beads coated with HLA
                ture usage in HLA reports: ambiguities and conversion to serotypes.   antigens. Transfusion 40(7):861–866, 2000.
                Eur J Immunogenet 29(3):273–274, 2002.            130.  Duquesnoy  RJ,  Marrari  M:  HLAMatchmaker:  a  molecularly  based
            108.  Dupont  B:  Nomenclature  for  factors  of  the  HLA  system,  1987.   algorithm for histocompatibility determination. II. Verification of the
                Decisions  of  the  Nomenclature  Committee  on  Leukocyte  Antigens,   algorithm and determination of the relative immunogenicity of amino
                which met in New York on November 21-23, 1987. Hum Immunol   acid triplet-defined epitopes. Hum Immunol 63(5):353–363, 2002.
                26(1):3–14, 1989.                                 131.  Rotzschke  O,  Falk  K,  Stevanovic  S,  et al:  Peptide  motifs  of  closely
            109.  Robinson J, Mistry K, McWilliam H, et al: The IMGT/HLA database.   related HLA class I molecules encompass substantial differences. Eur J
                Nucleic Acids Res 39(Database issue):D1171–D1176, 2011.  Immunol 22(9):2453–2456, 1992.
            110.  Shilling HG, Guethlein LA, Cheng NW, et al: Allelic polymorphism   132.  Parker KC, Bednarek MA, Hull LK, et al: Sequence motifs important
                synergizes  with  variable  gene  content  to  individualize  human  KIR   for peptide binding to the human MHC class I molecule, HLA-A2. J
                genotype. J Immunol 168(5):2307–2315, 2002.           Immunol 149(11):3580–3587, 1992.
            111.  Turner D, Choudhury F, Reynard M, et al: Typing of multiple single   133.  Sette A, Vitiello A, Reherman B, et al: The relationship between class
                nucleotide polymorphisms in cytokine and receptor genes using SNaP-  I  binding  affinity  and  immunogenicity  of  potential  cytotoxic T  cell
                shot. Hum Immunol 63(6):508–513, 2002.                epitopes. J Immunol 153(12):5586–5592, 1994.
            112.  Svejgaard  A,  Ryder  LP:  HLA  and  disease  associations:  detecting  the   134.  Bunce  M,  O’Neill  CM,  Barnardo  MC,  et al:  Phototyping:  compre-
                strongest association. Tissue Antigens 43(1):18–27, 1994.  hensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5
            113.  Boisgerault  F,  Khalil  I,  Tieng  V,  et al:  Definition  of  the  HLA-A29   & DQB1 by PCR with 144 primer mixes utilizing sequence-specific
                peptide  ligand  motif  allows  prediction  of  potential  T-cell  epitopes   primers (PCR-SSP). Tissue Antigens 46(5):355–367, 1995.
                from the retinal soluble antigen, a candidate autoantigen in birdshot   135.  Krausa P, Browning MJ: A comprehensive PCR-SSP typing system for
                retinopathy. Proc Natl Acad Sci USA 93(8):3466–3470, 1996.  identification of HLA-A locus alleles. Tissue Antigens 47(3):237–244,
            114.  Cope AP, Patel SD, Hall F, et al: T cell responses to a human cartilage   1996.
                autoantigen  in  the  context  of  rheumatoid  arthritis-associated  and   136.  Itoh Y, Mizuki N, Shimada T, et al: High-throughput DNA typing of
                nonassociated  HLA-DR4  alleles.  Arthritis  Rheum  42(7):1497–1507,   HLA-A, -B, -C, and -DRB1 loci by a PCR-SSOP-Luminex method in
                1999.                                                 the Japanese population. Immunogenetics 57(10):717–729, 2005.
            115.  Friday  RP,  Trucco  M,  Pietropaolo  M:  Genetics  of  Type  1  diabetes   137.  Ng J, Hurley CK, Carter C, et al: Large-scale DRB and DQB1 oligo-
                mellitus. Diabetes Nutr Metab 12(1):3–26, 1999.       nucleotide typing for the NMDP registry: progress report from year 2.
            116.  Luppi  P,  Alexander  A,  Bertera  S,  et al:  The  same  HLA-DQ  alleles   Tissue Antigens 47(1):21–26, 1996.
                determine either susceptibility or resistance to different coxsackievirus-  138.  Bettinotti MMF HLA and cancer: Immunogenetics in action. 2001.
                mediated autoimmune diseases. J Biol Regul Homeost Agents 13(1):14–26,   139.  Adams SD, Barracchini KC, Simonis TB, et al: High throughput HLA
                1999.                                                 sequence-based  typing  (SBT)  utilizing  the  ABI  Prism  3700  DNA
            117.  Luppi P, Rossiello MR, Faas S, et al: Genetic background and environ-  Analyzer. Tumori 87(2):S40–S43, 2001.
                ment contribute synergistically to the onset of autoimmune diseases. J   140.  Adams  SDKP,  McGinniss  MH  Practicality  of  high-throughput  HLA
                Mol Med 73(8):381–393, 1995.                          sequencing based typing. 2001;Sect. 45.
            118.  Jongeneel  CV,  Briant  L,  Udalova  IA,  et al:  Extensive  genetic  poly-  141.  McGinniss MHSJ, Adams SD: Implementing high throughput HLA
                morphism in the human tumor necrosis factor region and relation to   SBT on a 96-capillary DNA sequencer. In. Hum Immunol 2001.
                extended HLA haplotypes. Proc Natl Acad Sci USA 88(21):9717–9721,   142.  Adams SD, Barracchini KC, Chen D, et al: Ambiguous allele combina-
                1991.                                                 tions in HLA Class I and Class II sequence-based typing: when precise
   1955   1956   1957   1958   1959   1960   1961   1962   1963   1964   1965