Page 1958 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1958
Chapter 113 Human Leukocyte Antigen and Human Neutrophil Antigen Systems 1737.e1
REFERENCES glycoprotein-100 by HLA-A2 subtypes. Implications for peptide-based
immunotherapy. J Immunol 156(10):3882–3891, 1996.
1. Gorer PA: The detection of antigenic differences in mouse erythrocytes 24. Kim CJ, Parkinson DR, Marincola F: Immunodominance across HLA
by employment of immune sera. Br J Exp Pathol 17(42):1938. polymorphism: implications for cancer immunotherapy. J Immunother
2. Edidin M: The natural history of the major histocompatibility complex 21(1):1–16, 1998.
Jan Klein, John Wiley & Sons, 1986. pound90.75 (xix + 775 pages) 25. Parker KC, Bednarek MA, Coligan JE: Scheme for ranking potential
ISBN 0 471 80953 5. Immunol Today 8(5):159–160, 1987. HLA-A2 binding peptides based on independent binding of individual
3. Trowsdale J, Ragoussis J, Campbell RD: Map of the human MHC. peptide side-chains. J Immunol 152(1):163–175, 1994.
Immunol Today 12(12):443–446, 1991. 26. Parker KC, DiBrino M, Hull L, et al: The beta 2-microglobulin dis-
4. Marsh SG, Albert ED, Bodmer WF, et al: Nomenclature for factors of sociation rate is an accurate measure of the stability of MHC class
the HLA system, 2004. Hum Immunol 66(5):571–636, 2005. I heterotrimers and depends on which peptide is bound. J Immunol
5. Germain RN, Malissen B: Analysis of the expression and function 149(6):1896–1904, 1992.
of class-II major histocompatibility complex-encoded molecules 27. Hunt DF, Henderson RA, Shabanowitz J, et al: Characterization of
by DNA-mediated gene transfer. Ann Rev Immunol 4:281–315, peptides bound to the class I MHC molecule HLA-A2.1 by mass
1986. spectrometry. Science 255(5049):1261–1263, 1992.
6. Malissen M, Malissen B, Jordan BR: Exon/intron organization and 28. Lanzavecchia A, Iezzi G, Viola A: From TCR engagement to T cell
complete nucleotide sequence of an HLA gene. Proc Natl Acad Sci USA activation: a kinetic view of T cell behavior. Cell 96(1):1–4, 1999.
79(3):893–897, 1982. 29. Yewdell JW, Bennink JR: The binary logic of antigen processing and
7. Goodfellow PN, Jones EA, Van Heyningen V, et al: The beta2- presentation to T cells. Cell 62(2):203–206, 1990.
microglobulin gene is on chromosome 15 and not in the HL-A region. 30. Pamer E, Cresswell P: Mechanisms of MHC class I–restricted antigen
Nature 254(5497):267–269, 1975. processing. Ann Rev Immunol 16:323–358, 1998.
8. Terasaki IPGD. HLA. UCLA Tissue Typing Laboratory 1997. 31. Wiertz EJ, Jones TR, Sun L, et al: The human cytomegalovirus US11
9. Bjorkman PJ, Saper MA, Samraoui B, et al: Structure of the human class gene product dislocates MHC class I heavy chains from the endoplas-
I histocompatibility antigen, HLA-A2. Nature 329(6139):506–512, mic reticulum to the cytosol. Cell 84(5):769–779, 1996.
1987. 32. Wiertz EJ, Mukherjee S, Ploegh HL: Viruses use stealth technology to
10. Brown JH, Jardetzky TS, Gorga JC, et al: Three-dimensional structure escape from the host immune system. Mol Med Today 3(3):116–123,
of the human class II histocompatibility antigen HLA-DR1. Nature 1997.
364(6432):33–39, 1993. 33. Falk CS, Mach M, Schendel DJ, et al: NK cell activity during human
11. Garboczi DN, Ghosh P, Utz U, et al: Structure of the complex cytomegalovirus infection is dominated by US2-11-mediated HLA
between human T-cell receptor, viral peptide and HLA-A2. Nature class I down-regulation. J Immunol 169(6):3257–3266, 2002.
384(6605):134–141, 1996. 34. Chen Y, Rocha V, Bittencourt H, et al: Relationship between HLA
12. Falk K, Rotzschke O, Stevanovic S, et al: Allele-specific motifs revealed alleles and cytomegalovirus infection after allogenic hematopoietic stem
by sequencing of self-peptides eluted from MHC molecules. Nature cell transplant. Blood 98(2):500–501, 2001.
351(6324):290–296, 1991. 35. Lopez-Botet M, Llano M, Ortega M: Human cytomegalovirus and
13. Ruppert J, Sidney J, Celis E, et al: Prominent role of secondary natural killer-mediated surveillance of HLA class I expression: a
anchor residues in peptide binding to HLA-A2.1 molecules. Cell paradigm of host-pathogen adaptation. Immunol Rev 181:193–202,
74(5):929–937, 1993. 2001.
14. del Guercio MF, Sidney J, Hermanson G, et al: Binding of a peptide 36. Ulbrecht M, Martinozzi S, Grzeschik M, et al: Cutting edge: the human
antigen to multiple HLA alleles allows definition of an A2-like super- cytomegalovirus UL40 gene product contains a ligand for HLA-E and
type. J Immunol 154(2):685–693, 1995. prevents NK cell-mediated lysis. J Immunol 164(10):5019–5022, 2000.
15. Sidney J, del Guercio MF, Southwood S, et al: The HLA molecules 37. Kropshofer H, Hammerling GJ, Vogt AB: The impact of the non-
DQA1*0501/B1*0201 and DQA1*0301/B1*0302 share an extensive classical MHC proteins HLA-DM and HLA-DO on loading of MHC
overlap in peptide binding specificity. J Immunol 169(9):5098–5108, class II molecules. Immunol Rev 172:267–278, 1999.
2002. 38. Daar AS, Fuggle SV, Fabre JW, et al: The detailed distribution of
16. Sidney J, Grey HM, Southwood S, et al: Definition of an HLA-A3-like HLA-A, B, C antigens in normal human organs. Transplantation
supermotif demonstrates the overlapping peptide-binding repertoires of 38(3):287–292, 1984.
common HLA molecules. Hum Immunol 45(2):79–93, 1996. 39. Kowalik I, Kurpisz M, Jakubowiak A, et al: Szymczynski G. Evaluation
17. Madden DR, Garboczi DN, Wiley DC: The antigenic identity of of HLA expression on gametogenic cells isolated from human testis.
peptide-MHC complexes: a comparison of the conformations of five Andrologia 21(3):237–243, 1989.
viral peptides presented by HLA-A2. Cell 75(4):693–708, 1993. 40. Datema G, Stein S, Eijsink C, et al: HLA-C expression on platelets:
18. Hennecke J, Carfi A, Wiley DC: Structure of a covalently stabilized studies with an HLA-Cw1-specific human monoclonal antibody. Vox
complex of a human alphabeta T-cell receptor, influenza HA peptide Sang 79(2):108–111, 2000.
and MHC class II molecule, HLA-DR1. EMBO J 19(21):5611–5624, 41. Petz LD, Garratty G, Calhoun L, et al: Selecting donors of platelets for
2000. refractory patients on the basis of HLA antibody specificity. Transfusion
19. Hennecke J, Wiley DC: T cell receptor-MHC interactions up close. 40(12):1446–1456, 2000.
Cell 104(1):1–4, 2001. 42. Ornstein DL, Mortara KL, Smith MB, et al: Treatment of severe
20. Hennecke J, Wiley DC: Structure of a complex of the human alpha/ thrombocytopenia in alloimmunized, transfusion-refractory patients.
beta T cell receptor (TCR) HA1.7, influenza hemagglutinin peptide, Mil Med 166(3):269–274, 2001.
and major histocompatibility complex class II molecule, HLA-DR4 43. Kekomaki S, Volin L, Koistinen P, et al: Successful treatment of platelet
(DRA*0101 and DRB1*0401): insight into TCR cross-restriction and transfusion refractoriness: the use of platelet transfusions matched for
alloreactivity. J Exp Med 195(5):571–581, 2002. both human leucocyte antigens (HLA) and human platelet alloantigens
21. Threlkeld SC, Wentworth PA, Kalams SA, et al: Degenerate and (HPA) in alloimmunized patients with leukaemia. Eur J Haematol
promiscuous recognition by CTL of peptides presented by the MHC 60(2):112–118, 1998.
class I A3-like superfamily: implications for vaccine development. J 44. Gelb AB, Leavitt AD: Crossmatch-compatible platelets improve cor-
Immunol 159(4):1648–1657, 1997. rected count increments in patients who are refractory to randomly
22. Bettinotti MP, Kim CJ, Lee KH, et al: Stringent allele/epitope require- selected platelets. Transfusion 37(6):624–630, 1997.
ments for MART-1/Melan A immunodominance: implications for 45. Panzer S, Puchler K, Mayr WR, et al: Haemolytic transfusion reac-
peptide-based immunotherapy. J Immunol 161(2):877–889, 1998. tions due to HLA antibodies. A prospective study combining red-cell
23. Rivoltini L, Loftus DJ, Barracchini K, et al: Binding and presenta- serology with investigations of chromium-51-labelled red-cell kinetics.
tion of peptides derived from melanoma antigens MART-1 and Lancet 1(8531):474–478, 1987.

