Page 1958 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 1958

Chapter 113  Human Leukocyte Antigen and Human Neutrophil Antigen Systems  1737.e1

            REFERENCES                                                glycoprotein-100 by HLA-A2 subtypes. Implications for peptide-based
                                                                      immunotherapy. J Immunol 156(10):3882–3891, 1996.
             1.  Gorer PA: The detection of antigenic differences in mouse erythrocytes   24.  Kim CJ, Parkinson DR, Marincola F: Immunodominance across HLA
                by employment of immune sera. Br J Exp Pathol 17(42):1938.  polymorphism: implications for cancer immunotherapy. J Immunother
             2.  Edidin M: The natural history of the major histocompatibility complex   21(1):1–16, 1998.
                Jan Klein, John Wiley & Sons, 1986. pound90.75 (xix + 775 pages)   25.  Parker KC, Bednarek MA, Coligan JE: Scheme for ranking potential
                ISBN 0 471 80953 5. Immunol Today 8(5):159–160, 1987.  HLA-A2 binding peptides based on independent binding of individual
             3.  Trowsdale J, Ragoussis J, Campbell RD: Map of the human MHC.   peptide side-chains. J Immunol 152(1):163–175, 1994.
                Immunol Today 12(12):443–446, 1991.                26.  Parker KC, DiBrino M, Hull L, et al: The beta 2-microglobulin dis-
             4.  Marsh SG, Albert ED, Bodmer WF, et al: Nomenclature for factors of   sociation  rate  is  an  accurate  measure  of  the  stability  of  MHC  class
                the HLA system, 2004. Hum Immunol 66(5):571–636, 2005.  I heterotrimers and depends on which peptide is bound. J Immunol
             5.  Germain  RN,  Malissen  B:  Analysis  of  the  expression  and  function   149(6):1896–1904, 1992.
                of  class-II  major  histocompatibility  complex-encoded  molecules   27.  Hunt  DF,  Henderson  RA,  Shabanowitz  J,  et al:  Characterization  of
                by  DNA-mediated  gene  transfer.  Ann  Rev  Immunol  4:281–315,   peptides  bound  to  the  class  I  MHC  molecule  HLA-A2.1  by  mass
                1986.                                                 spectrometry. Science 255(5049):1261–1263, 1992.
             6.  Malissen  M,  Malissen  B,  Jordan  BR:  Exon/intron  organization  and   28.  Lanzavecchia  A,  Iezzi  G, Viola  A:  From TCR  engagement  to T  cell
                complete nucleotide sequence of an HLA gene. Proc Natl Acad Sci USA   activation: a kinetic view of T cell behavior. Cell 96(1):1–4, 1999.
                79(3):893–897, 1982.                               29.  Yewdell JW, Bennink JR: The binary logic of antigen processing and
             7.  Goodfellow  PN,  Jones  EA,  Van  Heyningen  V,  et al:  The  beta2-  presentation to T cells. Cell 62(2):203–206, 1990.
                microglobulin gene is on chromosome 15 and not in the HL-A region.   30.  Pamer E, Cresswell P: Mechanisms of MHC class I–restricted antigen
                Nature 254(5497):267–269, 1975.                       processing. Ann Rev Immunol 16:323–358, 1998.
             8.  Terasaki IPGD. HLA. UCLA Tissue Typing Laboratory 1997.  31.  Wiertz EJ, Jones TR, Sun L, et al: The human cytomegalovirus US11
             9.  Bjorkman PJ, Saper MA, Samraoui B, et al: Structure of the human class   gene product dislocates MHC class I heavy chains from the endoplas-
                I  histocompatibility  antigen,  HLA-A2.  Nature  329(6139):506–512,   mic reticulum to the cytosol. Cell 84(5):769–779, 1996.
                1987.                                              32.  Wiertz EJ, Mukherjee S, Ploegh HL: Viruses use stealth technology to
             10.  Brown JH, Jardetzky TS, Gorga JC, et al: Three-dimensional structure   escape from the host immune system. Mol Med Today 3(3):116–123,
                of  the  human  class  II  histocompatibility  antigen  HLA-DR1.  Nature   1997.
                364(6432):33–39, 1993.                             33.  Falk CS, Mach M, Schendel DJ, et al: NK cell activity during human
             11.  Garboczi  DN,  Ghosh  P,  Utz  U,  et al:  Structure  of  the  complex   cytomegalovirus  infection  is  dominated  by  US2-11-mediated  HLA
                between  human  T-cell  receptor,  viral  peptide  and  HLA-A2.  Nature   class I down-regulation. J Immunol 169(6):3257–3266, 2002.
                384(6605):134–141, 1996.                           34.  Chen  Y,  Rocha  V,  Bittencourt  H,  et al:  Relationship  between  HLA
             12.  Falk K, Rotzschke O, Stevanovic S, et al: Allele-specific motifs revealed   alleles and cytomegalovirus infection after allogenic hematopoietic stem
                by  sequencing  of  self-peptides  eluted  from  MHC  molecules.  Nature   cell transplant. Blood 98(2):500–501, 2001.
                351(6324):290–296, 1991.                           35.  Lopez-Botet  M,  Llano  M,  Ortega  M:  Human  cytomegalovirus  and
             13.  Ruppert  J,  Sidney  J,  Celis  E,  et al:  Prominent  role  of  secondary   natural  killer-mediated  surveillance  of  HLA  class  I  expression:  a
                anchor  residues  in  peptide  binding  to  HLA-A2.1  molecules.  Cell   paradigm  of  host-pathogen  adaptation.  Immunol  Rev  181:193–202,
                74(5):929–937, 1993.                                  2001.
             14.  del Guercio MF, Sidney J, Hermanson G, et al: Binding of a peptide   36.  Ulbrecht M, Martinozzi S, Grzeschik M, et al: Cutting edge: the human
                antigen to multiple HLA alleles allows definition of an A2-like super-  cytomegalovirus UL40 gene product contains a ligand for HLA-E and
                type. J Immunol 154(2):685–693, 1995.                 prevents NK cell-mediated lysis. J Immunol 164(10):5019–5022, 2000.
             15.  Sidney J, del Guercio MF, Southwood S, et al: The HLA molecules   37.  Kropshofer  H,  Hammerling  GJ,  Vogt  AB: The  impact  of  the  non-
                DQA1*0501/B1*0201 and DQA1*0301/B1*0302 share an extensive   classical MHC proteins HLA-DM and HLA-DO on loading of MHC
                overlap in peptide binding specificity. J Immunol 169(9):5098–5108,   class II molecules. Immunol Rev 172:267–278, 1999.
                2002.                                              38.  Daar  AS,  Fuggle  SV,  Fabre  JW,  et al:  The  detailed  distribution  of
             16.  Sidney J, Grey HM, Southwood S, et al: Definition of an HLA-A3-like   HLA-A,  B,  C  antigens  in  normal  human  organs.  Transplantation
                supermotif demonstrates the overlapping peptide-binding repertoires of   38(3):287–292, 1984.
                common HLA molecules. Hum Immunol 45(2):79–93, 1996.  39.  Kowalik I, Kurpisz M, Jakubowiak A, et al: Szymczynski G. Evaluation
             17.  Madden  DR,  Garboczi  DN,  Wiley  DC:  The  antigenic  identity  of   of HLA expression on gametogenic cells isolated from human testis.
                peptide-MHC complexes: a comparison of the conformations of five   Andrologia 21(3):237–243, 1989.
                viral peptides presented by HLA-A2. Cell 75(4):693–708, 1993.  40.  Datema G, Stein S, Eijsink C, et al: HLA-C expression on platelets:
             18.  Hennecke J, Carfi A, Wiley DC: Structure of a covalently stabilized   studies with an HLA-Cw1-specific human monoclonal antibody. Vox
                complex of a human alphabeta T-cell receptor, influenza HA peptide   Sang 79(2):108–111, 2000.
                and MHC class II molecule, HLA-DR1. EMBO J 19(21):5611–5624,   41.  Petz LD, Garratty G, Calhoun L, et al: Selecting donors of platelets for
                2000.                                                 refractory patients on the basis of HLA antibody specificity. Transfusion
             19.  Hennecke J, Wiley DC: T cell receptor-MHC interactions up close.   40(12):1446–1456, 2000.
                Cell 104(1):1–4, 2001.                             42.  Ornstein  DL,  Mortara  KL,  Smith  MB,  et al:  Treatment  of  severe
             20.  Hennecke J, Wiley DC: Structure of a complex of the human alpha/  thrombocytopenia  in  alloimmunized,  transfusion-refractory  patients.
                beta T cell receptor (TCR) HA1.7, influenza hemagglutinin peptide,   Mil Med 166(3):269–274, 2001.
                and  major  histocompatibility  complex  class  II  molecule,  HLA-DR4   43.  Kekomaki S, Volin L, Koistinen P, et al: Successful treatment of platelet
                (DRA*0101 and DRB1*0401): insight into TCR cross-restriction and   transfusion refractoriness: the use of platelet transfusions matched for
                alloreactivity. J Exp Med 195(5):571–581, 2002.       both human leucocyte antigens (HLA) and human platelet alloantigens
             21.  Threlkeld  SC,  Wentworth  PA,  Kalams  SA,  et al:  Degenerate  and   (HPA)  in  alloimmunized  patients  with  leukaemia.  Eur  J  Haematol
                promiscuous recognition by CTL of peptides presented by the MHC   60(2):112–118, 1998.
                class  I  A3-like  superfamily:  implications  for  vaccine  development.  J   44.  Gelb AB, Leavitt AD: Crossmatch-compatible platelets improve cor-
                Immunol 159(4):1648–1657, 1997.                       rected  count  increments  in  patients  who  are  refractory  to  randomly
             22.  Bettinotti MP, Kim CJ, Lee KH, et al: Stringent allele/epitope require-  selected platelets. Transfusion 37(6):624–630, 1997.
                ments  for  MART-1/Melan  A  immunodominance:  implications  for   45.  Panzer  S,  Puchler  K,  Mayr  WR,  et al:  Haemolytic  transfusion  reac-
                peptide-based immunotherapy. J Immunol 161(2):877–889, 1998.  tions due to HLA antibodies. A prospective study combining red-cell
             23.  Rivoltini  L,  Loftus  DJ,  Barracchini  K,  et al:  Binding  and  presenta-  serology with investigations of chromium-51-labelled red-cell kinetics.
                tion  of  peptides  derived  from  melanoma  antigens  MART-1  and   Lancet 1(8531):474–478, 1987.
   1953   1954   1955   1956   1957   1958   1959   1960   1961   1962   1963