Page 394 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 394

320.e10  Part IV  Disorders of Hematopoietic Cell Development


        437.  Young NS, Nienhuis AW: Hemoglobin switching in sheep and man.   461.  Toles  JF,  Chui  DH,  Belbeck  LW,  et al:  Hemopoietic  stem  cells  in
            In Silber R, LoBue J, Gordon A, editors: The Year in Hematology, New   murine embryonic yolk sac and peripheral blood. Proc Natl Acad Sci
            York, NY, 1978, Plenum, p 103.                        USA 86:7456, 1989.
        438.  Wintour  EM,  Smith  MB,  Bell  RJ,  et al:  The  role  of  fetal  adrenal   462.  Huang H, Auerbach R: Identification and characterization of hemato-
            hormones in the switch from fetal to adult globin synthesis in the sheep.   poietic stem cells from the yolk sac of the early mouse embryo. Proc
            J Endocrinol 104:165, 1985.                           Natl Acad Sci USA 90:10110, 1993.
        439.  Wood WG, Bunch C, Kelly S, et al: Control of haemoglobin switching   463.  Le Douarin NM: Cell migrations in embryos. Cell 38:353, 1984.
            by a developmental clock? Nature 313:320, 1985.   464.  Godin  I,  Dieterlen-Lievre  F,  Cumano  A:  Emergence  of  multipotent
        440.  Delfini C, Saglio G, Mazza U, et al: Fetal haemoglobin synthesis fol-  hemopoietic  cells  in  the  yolk  sac  and  paraaortic  splanchnopleura  in
            lowing fetal liver transplantation in man. Br J Haematol 55:609, 1983.  mouse embryos, beginning at 8.5 days postcoitus. Proc Natl Acad Sci
        441.  Papayannopoulou T, Nakamoto B, Agostinelli F, et al: Fetal to adult   USA 92:773, 1995.
            hemopoietic cell transplantation in humans: insights into hemoglobin   465.  Medvinsky A, Dzierzak E: Definitive hematopoiesis is autonomously
            switching. Blood 67:99, 1986.                         initiated by the AGM region. Cell 86:897, 1996.
        442.  Wood WG, Howes S, Bunch C: Developmental clocks and hemoglobin   466.  North  TE,  Goessling  W,  Peeters  M,  et al:  Hematopoietic  stem  cell
            switching. In Stamatoyannopoulos G, Nienhuis AW, editors: Develop-  development is dependent on blood flow. Cell 137:736, 2009.
            mental Control of Globin Gene Expression, New York, NY, 1987, Alan   467.  Evans T: Developmental biology of hematopoiesis. Hematol Oncol Clin
            R. Liss, p 521.                                       North Am 11:1115, 1997.
        443.  Perrine SP, Greene MF, Faller DV: Delay in the fetal globin switch in   468.  Tavian  M,  Coulombel  L,  Luton  D,  et al:  Aorta-associated  CD34+
            infants of diabetic mothers. N Engl J Med 312:334, 1985.  hematopoietic cells in the early human embryo. Blood 87:67, 1996.
        444.  Costantini F, Radice G, Magram J, et al: Developmental regulation of   469.  Rhodes KE, Gekas C, Wang Y, et al: The emergence of hematopoietic
            human globin genes in transgenic mice. Cold Spring Harb Symp Quant   stem  cells  is  initiated  in  the  placental  vasculature  in  the  absence  of
            Biol 50:361, 1985.                                    circulation. Cell Stem Cell 2:252, 2008.
        445.  Baron MH, Maniatis T: Rapid reprogramming of globin gene expres-  470.  Mikkola HK, Gekas C, Orkin SH, et al: Placenta as a site for hemato-
            sion in transient heterokaryons. Cell 46:591, 1986.   poietic stem cell development. Exp Hematol 33:1048, 2005.
        446.  Choi  OR,  Engel  JD:  Developmental  regulation  of  beta-globin  gene   471.  Kennedy M, Firpo M, Choi K, et al: A common precursor for primitive
            switching. Cell 55:17, 1988.                          erythropoiesis and definitive haematopoiesis. Nature 386:488, 1997.
        447.  Enver T, Raich N, Ebens AJ, et al: Developmental regulation of human   472.  Zambidis ET, Sinka L, Tavian M, et al: Emergence of human angiohe-
            fetal-to-adult globin gene switching in transgenic mice. Nature 344:309,   matopoietic cells in normal development and from cultured embryonic
            1990.                                                 stem cells. Ann N Y Acad Sci 1106:223, 2007.
        448.  Thein SL, Menzel S, Peng X, et al: Intergenic variants of HBS1L-MYB   473.  Turpen JB, Kelley CM, Mead PE, et al: Bipotential primitive-definitive
            are responsible for a major quantitative trait locus on chromosome 6q23   hematopoietic progenitors in the vertebrate embryo. Immunity 7:325,
            influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci USA   1997.
            104:11346, 2007.                                  474.  Sasaki K, Yagi H, Bronson RT, et al: Absence of fetal liver hematopoiesis
        449.  Galarneau G, Palmer CD, Sankaran VG, et al: Fine-mapping at three   in mice deficient in transcriptional coactivator core binding factor beta.
            loci known to affect fetal hemoglobin levels explains additional genetic   Proc Natl Acad Sci USA 93:12359, 1996.
            variation. Nat Genet 42:1049, 2010.               475.  Maetens M, Doumont G, Clercq SD, et al: Distinct roles of Mdm2
        450.  Sankaran VG, Menne TF, Xu J, et al: Human fetal hemoglobin expres-  and Mdm4 in red cell production. Blood 109:2630, 2007.
            sion is regulated by the developmental stage-specific repressor BCL11A.   476.  Grosveld F, van Assendelft GB, Greaves DR, et al: Position-independent,
            Science 322:1839, 2008.                               high-level expression of the human beta-globin gene in transgenic mice.
        451.  Xu J, Peng C, Sankaran VG, et al: Correction of sickle cell disease in   Cell 51:975, 1987.
            adult  mice  by  interference  with  fetal  hemoglobin  silencing.  Science   477.  Papayannopoulou T, Enver T, Takegawa S, et al: Activation of develop-
            334:993, 2011.                                        mentally mutated human globin genes by cell fusion. Science 242:1056,
        452.  Deng W, Rupon JW, Krivega I, et al: Reactivation of developmentally   1988.
            silenced  globin  genes  by  forced  chromatin  looping.  Cell  158:849,   478.  Begley CG, Aplan PD, Davey MP, et al: Chromosomal translocation
            2014.                                                 in a human leukemic stem-cell line disrupts the T-cell antigen recep-
        453.  Sankaran  VG,  Menne TF,  Scepanovic  D,  et al:  MicroRNA-15a  and   tor delta-chain diversity region and results in a previously unreported
            -16-1 act via MYB to elevate fetal hemoglobin expression in human   fusion transcript. Proc Natl Acad Sci USA 86:2031, 1989.
            trisomy 13. Proc Natl Acad Sci USA 108:1519, 2011.  479.  Robb L, Lyons I, Li R, et al: Absence of yolk sac hematopoiesis from
        454.  Liu  D,  Zhang  X,  Yu  L,  et al:  KLF1  mutations  are  relatively  more   mice with a targeted disruption of the scl gene. Proc Natl Acad Sci USA
            common in a thalassemia endemic region and ameliorate the severity   92:7075, 1995.
            of beta-thalassemia. Blood 124:803, 2014.         480.  Warren AJ, Colledge WH, Carlton MB, et al: The oncogenic cysteine-
        455.  Borg J, Papadopoulos P, Georgitsi M, et al: Haploinsufficiency for the   rich LIM domain protein rbtn2 is essential for erythroid development.
            erythroid  transcription  factor  KLF1  causes  hereditary  persistence  of   Cell 78:45, 1994.
            fetal hemoglobin. Nat Genet 42:801, 2010.         481.  Tsai  FY,  Keller  G,  Kuo  FC,  et al:  An  early  haematopoietic  defect
        456.  Gallienne AE, Dréau HM, Schuh A, et al: Ten novel mutations in the   in  mice  lacking  the  transcription  factor  GATA-2.  Nature  371:221,
            erythroid transcription factor KLF1 gene associated with increased fetal   1994.
            hemoglobin levels in adults. Haematologica 97:340, 2012.  482.  Okuda  T,  van  Deursen  J,  Hiebert  SW,  et al:  AML1,  the  target  of
        457.  Satta S, Perseu L, Moi P, et al: Compound heterozygosity for KLF1   multiple chromosomal translocations in human leukemia, is essential
            mutations associated with remarkable increase of fetal hemoglobin and   for normal fetal liver hematopoiesis. Cell 84:321, 1996.
            red cell protoporphyrin. Haematologica 96:767, 2011.  483.  Wang Q, Stacy T, Binder M, et al: Disruption of the Cbfa2 gene causes
        458.  Paciaroni K, Lucarelli G: Hemopoietic stem cell transplantation failure   necrosis and hemorrhaging in the central nervous system and blocks
            followed  by  switch  to  stable  production  of  fetal  hemoglobin.  Blood   definitive hematopoiesis. Proc Natl Acad Sci USA 93:3444, 1996.
            119:1091, 2012.                                   484.  Wang Q, Stacy T, Miller JD, et al: The CBFbeta subunit is essential for
        459.  Paciaroni  K,  Lucarelli  G,  Martelli  F,  et al:  Transfusion-independent   CBFalpha2 (AML1) function in vivo. Cell 87:697, 1996.
            beta(0)-thalassemia after bone marrow transplantation failure: proposed   485.  Tsang AP, Visvader JE, Turner CA, et al: FOG, a multitype zinc finger
            involvement of high parental HbF and an epigenetic mechanism. Am J   protein, acts as a cofactor for transcription factor GATA-1 in erythroid
            Blood Res 4:27, 2014.                                 and megakaryocytic differentiation. Cell 90:109, 1997.
        460.  Moore MA, Metcalf D: Ontogeny of the haemopoietic system: yolk sac   486.  Chang  AN,  Cantor  AB,  Fujiwara  Y,  et al:  GATA-factor  dependence
            origin of in vivo and in vitro colony forming cells in the developing   of  the  multitype  zinc-finger  protein  FOG-1  for  its  essential  role  in
            mouse embryo. Br J Haematol 18:279, 1970.             megakaryopoiesis. Proc Natl Acad Sci USA 99:9237, 2002.
   389   390   391   392   393   394   395   396   397   398   399