Page 394 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 394
320.e10 Part IV Disorders of Hematopoietic Cell Development
437. Young NS, Nienhuis AW: Hemoglobin switching in sheep and man. 461. Toles JF, Chui DH, Belbeck LW, et al: Hemopoietic stem cells in
In Silber R, LoBue J, Gordon A, editors: The Year in Hematology, New murine embryonic yolk sac and peripheral blood. Proc Natl Acad Sci
York, NY, 1978, Plenum, p 103. USA 86:7456, 1989.
438. Wintour EM, Smith MB, Bell RJ, et al: The role of fetal adrenal 462. Huang H, Auerbach R: Identification and characterization of hemato-
hormones in the switch from fetal to adult globin synthesis in the sheep. poietic stem cells from the yolk sac of the early mouse embryo. Proc
J Endocrinol 104:165, 1985. Natl Acad Sci USA 90:10110, 1993.
439. Wood WG, Bunch C, Kelly S, et al: Control of haemoglobin switching 463. Le Douarin NM: Cell migrations in embryos. Cell 38:353, 1984.
by a developmental clock? Nature 313:320, 1985. 464. Godin I, Dieterlen-Lievre F, Cumano A: Emergence of multipotent
440. Delfini C, Saglio G, Mazza U, et al: Fetal haemoglobin synthesis fol- hemopoietic cells in the yolk sac and paraaortic splanchnopleura in
lowing fetal liver transplantation in man. Br J Haematol 55:609, 1983. mouse embryos, beginning at 8.5 days postcoitus. Proc Natl Acad Sci
441. Papayannopoulou T, Nakamoto B, Agostinelli F, et al: Fetal to adult USA 92:773, 1995.
hemopoietic cell transplantation in humans: insights into hemoglobin 465. Medvinsky A, Dzierzak E: Definitive hematopoiesis is autonomously
switching. Blood 67:99, 1986. initiated by the AGM region. Cell 86:897, 1996.
442. Wood WG, Howes S, Bunch C: Developmental clocks and hemoglobin 466. North TE, Goessling W, Peeters M, et al: Hematopoietic stem cell
switching. In Stamatoyannopoulos G, Nienhuis AW, editors: Develop- development is dependent on blood flow. Cell 137:736, 2009.
mental Control of Globin Gene Expression, New York, NY, 1987, Alan 467. Evans T: Developmental biology of hematopoiesis. Hematol Oncol Clin
R. Liss, p 521. North Am 11:1115, 1997.
443. Perrine SP, Greene MF, Faller DV: Delay in the fetal globin switch in 468. Tavian M, Coulombel L, Luton D, et al: Aorta-associated CD34+
infants of diabetic mothers. N Engl J Med 312:334, 1985. hematopoietic cells in the early human embryo. Blood 87:67, 1996.
444. Costantini F, Radice G, Magram J, et al: Developmental regulation of 469. Rhodes KE, Gekas C, Wang Y, et al: The emergence of hematopoietic
human globin genes in transgenic mice. Cold Spring Harb Symp Quant stem cells is initiated in the placental vasculature in the absence of
Biol 50:361, 1985. circulation. Cell Stem Cell 2:252, 2008.
445. Baron MH, Maniatis T: Rapid reprogramming of globin gene expres- 470. Mikkola HK, Gekas C, Orkin SH, et al: Placenta as a site for hemato-
sion in transient heterokaryons. Cell 46:591, 1986. poietic stem cell development. Exp Hematol 33:1048, 2005.
446. Choi OR, Engel JD: Developmental regulation of beta-globin gene 471. Kennedy M, Firpo M, Choi K, et al: A common precursor for primitive
switching. Cell 55:17, 1988. erythropoiesis and definitive haematopoiesis. Nature 386:488, 1997.
447. Enver T, Raich N, Ebens AJ, et al: Developmental regulation of human 472. Zambidis ET, Sinka L, Tavian M, et al: Emergence of human angiohe-
fetal-to-adult globin gene switching in transgenic mice. Nature 344:309, matopoietic cells in normal development and from cultured embryonic
1990. stem cells. Ann N Y Acad Sci 1106:223, 2007.
448. Thein SL, Menzel S, Peng X, et al: Intergenic variants of HBS1L-MYB 473. Turpen JB, Kelley CM, Mead PE, et al: Bipotential primitive-definitive
are responsible for a major quantitative trait locus on chromosome 6q23 hematopoietic progenitors in the vertebrate embryo. Immunity 7:325,
influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci USA 1997.
104:11346, 2007. 474. Sasaki K, Yagi H, Bronson RT, et al: Absence of fetal liver hematopoiesis
449. Galarneau G, Palmer CD, Sankaran VG, et al: Fine-mapping at three in mice deficient in transcriptional coactivator core binding factor beta.
loci known to affect fetal hemoglobin levels explains additional genetic Proc Natl Acad Sci USA 93:12359, 1996.
variation. Nat Genet 42:1049, 2010. 475. Maetens M, Doumont G, Clercq SD, et al: Distinct roles of Mdm2
450. Sankaran VG, Menne TF, Xu J, et al: Human fetal hemoglobin expres- and Mdm4 in red cell production. Blood 109:2630, 2007.
sion is regulated by the developmental stage-specific repressor BCL11A. 476. Grosveld F, van Assendelft GB, Greaves DR, et al: Position-independent,
Science 322:1839, 2008. high-level expression of the human beta-globin gene in transgenic mice.
451. Xu J, Peng C, Sankaran VG, et al: Correction of sickle cell disease in Cell 51:975, 1987.
adult mice by interference with fetal hemoglobin silencing. Science 477. Papayannopoulou T, Enver T, Takegawa S, et al: Activation of develop-
334:993, 2011. mentally mutated human globin genes by cell fusion. Science 242:1056,
452. Deng W, Rupon JW, Krivega I, et al: Reactivation of developmentally 1988.
silenced globin genes by forced chromatin looping. Cell 158:849, 478. Begley CG, Aplan PD, Davey MP, et al: Chromosomal translocation
2014. in a human leukemic stem-cell line disrupts the T-cell antigen recep-
453. Sankaran VG, Menne TF, Scepanovic D, et al: MicroRNA-15a and tor delta-chain diversity region and results in a previously unreported
-16-1 act via MYB to elevate fetal hemoglobin expression in human fusion transcript. Proc Natl Acad Sci USA 86:2031, 1989.
trisomy 13. Proc Natl Acad Sci USA 108:1519, 2011. 479. Robb L, Lyons I, Li R, et al: Absence of yolk sac hematopoiesis from
454. Liu D, Zhang X, Yu L, et al: KLF1 mutations are relatively more mice with a targeted disruption of the scl gene. Proc Natl Acad Sci USA
common in a thalassemia endemic region and ameliorate the severity 92:7075, 1995.
of beta-thalassemia. Blood 124:803, 2014. 480. Warren AJ, Colledge WH, Carlton MB, et al: The oncogenic cysteine-
455. Borg J, Papadopoulos P, Georgitsi M, et al: Haploinsufficiency for the rich LIM domain protein rbtn2 is essential for erythroid development.
erythroid transcription factor KLF1 causes hereditary persistence of Cell 78:45, 1994.
fetal hemoglobin. Nat Genet 42:801, 2010. 481. Tsai FY, Keller G, Kuo FC, et al: An early haematopoietic defect
456. Gallienne AE, Dréau HM, Schuh A, et al: Ten novel mutations in the in mice lacking the transcription factor GATA-2. Nature 371:221,
erythroid transcription factor KLF1 gene associated with increased fetal 1994.
hemoglobin levels in adults. Haematologica 97:340, 2012. 482. Okuda T, van Deursen J, Hiebert SW, et al: AML1, the target of
457. Satta S, Perseu L, Moi P, et al: Compound heterozygosity for KLF1 multiple chromosomal translocations in human leukemia, is essential
mutations associated with remarkable increase of fetal hemoglobin and for normal fetal liver hematopoiesis. Cell 84:321, 1996.
red cell protoporphyrin. Haematologica 96:767, 2011. 483. Wang Q, Stacy T, Binder M, et al: Disruption of the Cbfa2 gene causes
458. Paciaroni K, Lucarelli G: Hemopoietic stem cell transplantation failure necrosis and hemorrhaging in the central nervous system and blocks
followed by switch to stable production of fetal hemoglobin. Blood definitive hematopoiesis. Proc Natl Acad Sci USA 93:3444, 1996.
119:1091, 2012. 484. Wang Q, Stacy T, Miller JD, et al: The CBFbeta subunit is essential for
459. Paciaroni K, Lucarelli G, Martelli F, et al: Transfusion-independent CBFalpha2 (AML1) function in vivo. Cell 87:697, 1996.
beta(0)-thalassemia after bone marrow transplantation failure: proposed 485. Tsang AP, Visvader JE, Turner CA, et al: FOG, a multitype zinc finger
involvement of high parental HbF and an epigenetic mechanism. Am J protein, acts as a cofactor for transcription factor GATA-1 in erythroid
Blood Res 4:27, 2014. and megakaryocytic differentiation. Cell 90:109, 1997.
460. Moore MA, Metcalf D: Ontogeny of the haemopoietic system: yolk sac 486. Chang AN, Cantor AB, Fujiwara Y, et al: GATA-factor dependence
origin of in vivo and in vitro colony forming cells in the developing of the multitype zinc-finger protein FOG-1 for its essential role in
mouse embryo. Br J Haematol 18:279, 1970. megakaryopoiesis. Proc Natl Acad Sci USA 99:9237, 2002.

