Page 395 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 395
Chapter 26 Biology of Erythropoiesis, Erythroid Differentiation, and Maturation 320.e11
487. Hasegawa A, Shimizu R, Mohandas N, et al: Mature erythrocyte 509. Simon MC: Transcription factor GATA-1 and erythroid development.
membrane homeostasis is compromised by loss of the GATA1-FOG1 Proc Soc Exp Biol Med 202:115, 1993.
interaction. Blood 119:2615, 2012. 510. Fujiwara Y, Browne CP, Cunniff K, et al: Arrested development of
488. Robert NM, Tremblay JJ, Viger RS: Friend of GATA (FOG)-1 and embryonic red cell precursors in mouse embryos lacking transcription
FOG-2 differentially repress the GATA-dependent activity of multiple factor GATA-1. Proc Natl Acad Sci USA 93:12355, 1996.
gonadal promoters. Endocrinology 143:3963, 2002. 511. Cantor AB, Chang AN, Orkin SH: Plasticity of mature hematopoietic
489. Shimizu R, Takahashi S, Ohneda K, et al: In vivo requirements for cells: ectopic expression of the GATA cofactor FOG-1 reprograms
GATA-1 functional domains during primitive and definitive erythro- primary mast cells into erythroid and megakaryocytic cells. ASH Annual
poiesis. EMBO J 20:5250, 2001. Meeting Abstracts 98:3298a, 2001.
490. Visvader JE, Crossley M, Hill J, et al: The C-terminal zinc finger of 512. Iwasaki H, Mizuno S, Wells RA, et al: GATA-1 instructs commitment
GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentia- and transdifferentiation into megakaryocyte and erythroid lineages,
tion of an early myeloid cell line. Mol Cell Biol 15:634, 1995. counteracting myelomonocytic differentiation programs. ASH Annual
491. Blobel GA, Simon MC, Orkin SH: Rescue of GATA-1-deficient Meeting Abstracts 100:60a, 2002.
embryonic stem cells by heterologous GATA-binding proteins. Mol 513. Ghinassi B, Sanchez M, Martelli F, et al: The hypomorphic Gata-
Cell Biol 15:626, 1995. 1low mutation alters the proliferation/differentiation potential of the
492. Kadri Z, Shimizu R, Ohneda O, et al: Direct binding of pRb/E2F-2 common megakaryocytic-erythroid progenitor. Blood 109:1460, 2007.
to GATA-1 regulates maturation and terminal cell division during 514. Siatecka M, Bieker JJ: The multifunctional role of EKLF/KLF1 during
erythropoiesis. PLoS Biol 7:e1000123, 2009. erythropoiesis. Blood 118:2044, 2011.
493. Migliaccio AR, Rana RA, Sanchez M, et al: GATA-1 as a regulator of 515. Nuez B, Michalovich D, Bygrave A, et al: Defective haematopoiesis
mast cell differentiation revealed by the phenotype of the GATA-1low in fetal liver resulting from inactivation of the EKLF gene. Nature
mouse mutant. J Exp Med 197:281, 2003. 375:316, 1995.
494. Yu C, Cantor AB, Yang H, et al: Targeted deletion of a high-affinity 516. Drissen R, von Lindern M, Kolbus A, et al: The erythroid phenotype
GATA-binding site in the GATA-1 promoter leads to selective loss of of EKLF-null mice: defects in hemoglobin metabolism and membrane
the eosinophil lineage in vivo. J Exp Med 195:1387, 2002. stability. Mol Cell Biol 25:5205, 2005.
495. Gobel F, Taschner S, Jurkin J, et al: Reciprocal role of GATA-1 and 517. Nilson DG, Sabatino DE, Bodine DM, et al: Major erythrocyte mem-
vitamin D receptor in human myeloid dendritic cell differentiation. brane protein genes in EKLF-deficient mice. Exp Hematol 34:705,
Blood 114:3813, 2009. 2006.
496. Tsai FY, Browne CP, Orkin SH: Knock-in mutation of transcription 518. Bieker JJ: Kruppel-like factors: three fingers in many pies. J Biol Chem
factor GATA-3 into the GATA-1 locus: partial rescue of GATA-1 loss 276:34355, 2001.
of function in erythroid cells. Dev Biol 196:218, 1998. 519. Pilon AM, Nilson DG, Zhou D, et al: Alterations in expression and
497. Shivdasani RA, Fujiwara Y, McDevitt MA, et al: A lineage-selective chromatin configuration of the alpha hemoglobin-stabilizing protein
knockout establishes the critical role of transcription factor GATA-1 in gene in erythroid Kruppel-like factor-deficient mice. Mol Cell Biol
megakaryocyte growth and platelet development. EMBO J 16:3965, 26:4368, 2006.
1997. 520. Beru N, Maples PB, Hermine O, et al: Differential expression of
498. Kozma GT, Martelli F, Verrucci M, et al: Dynamic regulation of Gata1 alpha- and beta-globin genes in erythroleukemic cell lines. Mol Cell
expression during the maturation of conventional dendritic cells. Exp Biol 10:3591, 1990.
Hematol 38:489, 2010. 521. De Gobbi M, Viprakasit V, Hughes JR, et al: A regulatory SNP causes
499. McDevitt MA, Shivdasani RA, Fujiwara Y, et al: A “knockdown” muta- a human genetic disease by creating a new transcriptional promoter.
tion created by cis-element gene targeting reveals the dependence of Science 312:1215, 2006.
erythroid cell maturation on the level of transcription factor GATA-1. 522. Berry M, Grosveld F, Dillon N: A single point mutation is the cause of
Proc Natl Acad Sci USA 94:6781, 1997. the Greek form of hereditary persistence of fetal haemoglobin. Nature
500. Vyas P, McDevitt MA, Cantor AB, et al: Different sequence require- 358:499, 1992.
ments for expression in erythroid and megakaryocytic cells within 523. Moi P, Loudianos G, Lavinha J, et al: Delta-thalassemia due to a
a regulatory element upstream of the GATA-1 gene. Development mutation in an erythroid-specific binding protein sequence 3’ to the
126:2799, 1999. delta-globin gene. Blood 79:512, 1992.
501. Hernandez-Hernandez A, Ray P, Litos G, et al: Acetylation and MAPK 524. Zhou D, Liu K, Sun CW, et al: KLF1 regulates BCL11A expres-
phosphorylation cooperate to regulate the degradation of active GATA- sion and gamma- to beta-globin gene switching. Nat Genet 42:742,
1. EMBO J 25:3264, 2006. 2010.
502. Ribeil JA, Zermati Y, Vandekerckhove J, et al: Hsp70 regulates erythro- 525. Porcu S, Manchinu MF, Marongiu MF, et al: Klf1 affects DNase
poiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature II-alpha expression in the central macrophage of a fetal liver erythro-
445:102, 2007. blastic island: a non-cell-autonomous role in definitive erythropoiesis.
503. Frisan E, Vandekerckhove J, de Thonel A, et al: Defective nuclear Mol Cell Biol 31:4144, 2011.
localization of Hsp70 is associated with dyserythropoiesis and GATA-1 526. Xue L, Galdass M, Gnanapragasam MN, et al: Extrinsic and intrinsic
cleavage in myelodysplastic syndromes. Blood 119:1532, 2012. control by EKLF (KLF1) within a specialized erythroid niche. Develop-
504. Arlet JB, Ribeil JA, Guillem F, et al: HSP70 sequestration by free ment 141:2245, 2014.
alpha-globin promotes ineffective erythropoiesis in beta-thalassaemia. 527. Benezra R, Davis RL, Lockshon D, et al: The protein Id: a nega-
Nature 514:242, 2014. tive regulator of helix-loop-helix DNA binding proteins. Cell 61:49,
505. Kadri Z, Maouche-Chretien L, Rooke HM, et al: Phosphatidylinositol 1990.
3-kinase/Akt induced by erythropoietin renders the erythroid differen- 528. Shoji W, Yamamoto T, Obinata M: The helix-loop-helix protein Id
tiation factor GATA-1 competent for TIMP-1 gene transactivation. Mol inhibits differentiation of murine erythroleukemia cells. J Biol Chem
Cell Biol 25:7412, 2005. 269:5078, 1994.
506. Zhao W, Kitidis C, Fleming MD, et al: Erythropoietin stimulates 529. Lister J, Forrester WC, Baron MH: Inhibition of an erythroid dif-
phosphorylation and activation of GATA-1 via the PI3-kinase/AKT ferentiation switch by the helix-loop-helix protein Id1. J Biol Chem
signaling pathway. Blood 107:907, 2006. 270:17939, 1995.
507. Rooke HM, Orkin SH: Phosphorylation of Gata1 at serine residues 72, 530. Shivdasani RA, Orkin SH: Erythropoiesis and globin gene expression
142, and 310 is not essential for hematopoiesis in vivo. Blood 107:3527, in mice lacking the transcription factor NF-E2. Proc Natl Acad Sci USA
2006. 92:8690, 1995.
508. Leonard M, Brice M, Engel JD, et al: Dynamics of GATA transcrip- 531. Shavit JA, Motohashi H, Onodera K, et al: Impaired megakaryopoiesis
tion factor expression during erythroid differentiation. Blood 82:1071, and behavioral defects in mafG-null mutant mice. Genes Dev 12:2164,
1993. 1998.

