Page 395 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 395

Chapter 26  Biology of Erythropoiesis, Erythroid Differentiation, and Maturation  320.e11


            487.  Hasegawa  A,  Shimizu  R,  Mohandas  N,  et al:  Mature  erythrocyte   509.  Simon MC: Transcription factor GATA-1 and erythroid development.
                membrane homeostasis is compromised by loss of the GATA1-FOG1   Proc Soc Exp Biol Med 202:115, 1993.
                interaction. Blood 119:2615, 2012.                510.  Fujiwara  Y,  Browne  CP,  Cunniff  K,  et al:  Arrested  development  of
            488.  Robert  NM, Tremblay  JJ, Viger  RS:  Friend  of  GATA  (FOG)-1  and   embryonic red cell precursors in mouse embryos lacking transcription
                FOG-2 differentially repress the GATA-dependent activity of multiple   factor GATA-1. Proc Natl Acad Sci USA 93:12355, 1996.
                gonadal promoters. Endocrinology 143:3963, 2002.  511.  Cantor AB, Chang AN, Orkin SH: Plasticity of mature hematopoietic
            489.  Shimizu  R, Takahashi  S,  Ohneda  K,  et al:  In  vivo  requirements  for   cells:  ectopic  expression  of  the  GATA  cofactor  FOG-1  reprograms
                GATA-1 functional domains during primitive and definitive erythro-  primary mast cells into erythroid and megakaryocytic cells. ASH Annual
                poiesis. EMBO J 20:5250, 2001.                        Meeting Abstracts 98:3298a, 2001.
            490.  Visvader JE, Crossley M, Hill J, et al: The C-terminal zinc finger of   512.  Iwasaki H, Mizuno S, Wells RA, et al: GATA-1 instructs commitment
                GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentia-  and  transdifferentiation  into  megakaryocyte  and  erythroid  lineages,
                tion of an early myeloid cell line. Mol Cell Biol 15:634, 1995.  counteracting myelomonocytic differentiation programs. ASH Annual
            491.  Blobel  GA,  Simon  MC,  Orkin  SH:  Rescue  of  GATA-1-deficient   Meeting Abstracts 100:60a, 2002.
                embryonic  stem  cells  by  heterologous  GATA-binding  proteins.  Mol   513.  Ghinassi  B,  Sanchez  M,  Martelli  F,  et al:  The  hypomorphic  Gata-
                Cell Biol 15:626, 1995.                               1low mutation alters the proliferation/differentiation potential of the
            492.  Kadri Z, Shimizu R, Ohneda O, et al: Direct binding of pRb/E2F-2   common megakaryocytic-erythroid progenitor. Blood 109:1460, 2007.
                to  GATA-1  regulates  maturation  and  terminal  cell  division  during   514.  Siatecka M, Bieker JJ: The multifunctional role of EKLF/KLF1 during
                erythropoiesis. PLoS Biol 7:e1000123, 2009.           erythropoiesis. Blood 118:2044, 2011.
            493.  Migliaccio AR, Rana RA, Sanchez M, et al: GATA-1 as a regulator of   515.  Nuez  B,  Michalovich  D,  Bygrave  A,  et al:  Defective  haematopoiesis
                mast cell differentiation revealed by the phenotype of the GATA-1low   in  fetal  liver  resulting  from  inactivation  of  the  EKLF  gene.  Nature
                mouse mutant. J Exp Med 197:281, 2003.                375:316, 1995.
            494.  Yu C, Cantor AB, Yang H, et al: Targeted deletion of a high-affinity   516.  Drissen R, von Lindern M, Kolbus A, et al: The erythroid phenotype
                GATA-binding site in the GATA-1 promoter leads to selective loss of   of EKLF-null mice: defects in hemoglobin metabolism and membrane
                the eosinophil lineage in vivo. J Exp Med 195:1387, 2002.  stability. Mol Cell Biol 25:5205, 2005.
            495.  Gobel F, Taschner S, Jurkin J, et al: Reciprocal role of GATA-1 and   517.  Nilson DG, Sabatino DE, Bodine DM, et al: Major erythrocyte mem-
                vitamin  D  receptor  in  human  myeloid  dendritic  cell  differentiation.   brane  protein  genes  in  EKLF-deficient  mice.  Exp  Hematol  34:705,
                Blood 114:3813, 2009.                                 2006.
            496.  Tsai FY, Browne CP, Orkin SH: Knock-in mutation of transcription   518.  Bieker JJ: Kruppel-like factors: three fingers in many pies. J Biol Chem
                factor GATA-3 into the GATA-1 locus: partial rescue of GATA-1 loss   276:34355, 2001.
                of function in erythroid cells. Dev Biol 196:218, 1998.  519.  Pilon AM, Nilson DG, Zhou D, et al: Alterations in expression and
            497.  Shivdasani  RA,  Fujiwara  Y,  McDevitt  MA,  et al:  A  lineage-selective   chromatin  configuration  of  the  alpha  hemoglobin-stabilizing  protein
                knockout establishes the critical role of transcription factor GATA-1 in   gene  in  erythroid  Kruppel-like  factor-deficient  mice.  Mol  Cell  Biol
                megakaryocyte  growth  and  platelet  development.  EMBO  J  16:3965,   26:4368, 2006.
                1997.                                             520.  Beru  N,  Maples  PB,  Hermine  O,  et al:  Differential  expression  of
            498.  Kozma GT, Martelli F, Verrucci M, et al: Dynamic regulation of Gata1   alpha-  and  beta-globin  genes  in  erythroleukemic  cell  lines.  Mol  Cell
                expression during the maturation of conventional dendritic cells. Exp   Biol 10:3591, 1990.
                Hematol 38:489, 2010.                             521.  De Gobbi M, Viprakasit V, Hughes JR, et al: A regulatory SNP causes
            499.  McDevitt MA, Shivdasani RA, Fujiwara Y, et al: A “knockdown” muta-  a human genetic disease by creating a new transcriptional promoter.
                tion created by cis-element gene targeting reveals the dependence of   Science 312:1215, 2006.
                erythroid cell maturation on the level of transcription factor GATA-1.   522.  Berry M, Grosveld F, Dillon N: A single point mutation is the cause of
                Proc Natl Acad Sci USA 94:6781, 1997.                 the Greek form of hereditary persistence of fetal haemoglobin. Nature
            500.  Vyas P, McDevitt MA, Cantor AB, et al: Different sequence require-  358:499, 1992.
                ments  for  expression  in  erythroid  and  megakaryocytic  cells  within   523.  Moi  P,  Loudianos  G,  Lavinha  J,  et al:  Delta-thalassemia  due  to  a
                a  regulatory  element  upstream  of  the  GATA-1  gene.  Development   mutation in an erythroid-specific binding protein sequence 3’ to the
                126:2799, 1999.                                       delta-globin gene. Blood 79:512, 1992.
            501.  Hernandez-Hernandez A, Ray P, Litos G, et al: Acetylation and MAPK   524.  Zhou  D,  Liu  K,  Sun  CW,  et al:  KLF1  regulates  BCL11A  expres-
                phosphorylation cooperate to regulate the degradation of active GATA-  sion  and  gamma-  to  beta-globin  gene  switching.  Nat  Genet  42:742,
                1. EMBO J 25:3264, 2006.                              2010.
            502.  Ribeil JA, Zermati Y, Vandekerckhove J, et al: Hsp70 regulates erythro-  525.  Porcu  S,  Manchinu  MF,  Marongiu  MF,  et al:  Klf1  affects  DNase
                poiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature   II-alpha expression in the central macrophage of a fetal liver erythro-
                445:102, 2007.                                        blastic island: a non-cell-autonomous role in definitive erythropoiesis.
            503.  Frisan  E,  Vandekerckhove  J,  de  Thonel  A,  et al:  Defective  nuclear   Mol Cell Biol 31:4144, 2011.
                localization of Hsp70 is associated with dyserythropoiesis and GATA-1   526.  Xue L, Galdass M, Gnanapragasam MN, et al: Extrinsic and intrinsic
                cleavage in myelodysplastic syndromes. Blood 119:1532, 2012.  control by EKLF (KLF1) within a specialized erythroid niche. Develop-
            504.  Arlet  JB,  Ribeil  JA,  Guillem  F,  et al:  HSP70  sequestration  by  free   ment 141:2245, 2014.
                alpha-globin promotes ineffective erythropoiesis in beta-thalassaemia.   527.  Benezra  R,  Davis  RL,  Lockshon  D,  et al:  The  protein  Id:  a  nega-
                Nature 514:242, 2014.                                 tive regulator of helix-loop-helix DNA binding proteins. Cell 61:49,
            505.  Kadri Z, Maouche-Chretien L, Rooke HM, et al: Phosphatidylinositol   1990.
                3-kinase/Akt induced by erythropoietin renders the erythroid differen-  528.  Shoji  W,  Yamamoto T,  Obinata  M: The  helix-loop-helix  protein  Id
                tiation factor GATA-1 competent for TIMP-1 gene transactivation. Mol   inhibits differentiation of murine erythroleukemia cells. J Biol Chem
                Cell Biol 25:7412, 2005.                              269:5078, 1994.
            506.  Zhao  W,  Kitidis  C,  Fleming  MD,  et al:  Erythropoietin  stimulates   529.  Lister  J,  Forrester  WC,  Baron  MH:  Inhibition  of  an  erythroid  dif-
                phosphorylation  and  activation  of  GATA-1  via  the  PI3-kinase/AKT   ferentiation  switch  by  the  helix-loop-helix  protein  Id1.  J  Biol  Chem
                signaling pathway. Blood 107:907, 2006.               270:17939, 1995.
            507.  Rooke HM, Orkin SH: Phosphorylation of Gata1 at serine residues 72,   530.  Shivdasani RA, Orkin SH: Erythropoiesis and globin gene expression
                142, and 310 is not essential for hematopoiesis in vivo. Blood 107:3527,   in mice lacking the transcription factor NF-E2. Proc Natl Acad Sci USA
                2006.                                                 92:8690, 1995.
            508.  Leonard M, Brice M, Engel JD, et al: Dynamics of GATA transcrip-  531.  Shavit JA, Motohashi H, Onodera K, et al: Impaired megakaryopoiesis
                tion factor expression during erythroid differentiation. Blood 82:1071,   and behavioral defects in mafG-null mutant mice. Genes Dev 12:2164,
                1993.                                                 1998.
   390   391   392   393   394   395   396   397   398   399   400