Page 396 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 396

320.e12  Part IV  Disorders of Hematopoietic Cell Development


        532.  Onodera  K, Takahashi  S,  Nishimura  S,  et al:  GATA-1  transcription   556.  Freson  K,  Devriendt  K,  Matthijs  G,  et al:  Platelet  characteristics  in
            is controlled by distinct regulatory mechanisms during primitive and   patients  with  X-linked  macrothrombocytopenia  because  of  a  novel
            definitive erythropoiesis. Proc Natl Acad Sci USA 94:4487, 1997.  GATA1 mutation. Blood 98:85, 2001.
        533.  Shalaby F, Ho J, Stanford WL, et al: A requirement for Flk1 in primitive   557.  Shimizu R, Ohneda K, Engel JD, et al: Transgenic rescue of GATA-
            and definitive hematopoiesis and vasculogenesis. Cell 89:981, 1997.  1-deficient mice with GATA-1 lacking a FOG-1 association site phe-
        534.  Russell ES: Hereditary anemias of the mouse: a review for geneticists.   nocopies patients with X-linked thrombocytopenia. Blood 103:2560,
            Adv Genet 20:357, 1979.                               2004.
        535.  Yoshida  K, Taga T,  Saito  M,  et al: Targeted  disruption  of  gp130,  a   558.  Tubman VN, Levine JE, Campagna DR, et al: X-linked gray platelet
            common signal transducer for the interleukin 6 family of cytokines,   syndrome  due  to  a  GATA1  Arg216Gln  mutation.  Blood  109:3297,
            leads  to  myocardial  and  hematological  disorders.  Proc  Natl  Acad  Sci   2007.
            USA 93:407, 1996.                                 559.  Åström M, Hahn-Strömberg V, Zetterberg E, et al: X-linked thrombo-
        536.  Qu CK, Shi ZQ, Shen R, et al: A deletion mutation in the SH2-N   cytopenia with thalassemia displays bone marrow reticulin fibrosis and
            domain of Shp-2 severely suppresses hematopoietic cell development.   enhanced angiogenesis: comparisons with primary myelofibrosis. Am J
            Mol Cell Biol 17:5499, 1997.                          Hematol 90:E44, 2015.
        537.  Visvader  JE,  Mao  X,  Fujiwara  Y,  et al:  The  LIM-domain  binding   560.  Phillips  JD,  Steensma  DP,  Pulsipher  MA,  et al:  Congenital  erythro-
            protein  Ldb1  and  its  partner  LMO2  act  as  negative  regulators  of   poietic porphyria due to a mutation in GATA1: the first trans-acting
            erythroid differentiation. Proc Natl Acad Sci USA 94:13707, 1997.  mutation causative for a human porphyria. Blood 109:2618, 2007.
        538.  Mikkola  HK,  Klintman  J, Yang  H,  et al:  Haematopoietic  stem  cells   561.  Cantor  AB,  Katz  SG,  Orkin  SH:  Distinct  domains  of  the  GATA-1
            retain long-term repopulating activity and multipotency in the absence   cofactor  FOG-1  differentially  influence  erythroid  versus  megakaryo-
            of stem-cell leukaemia SCL/tal-1 gene. Nature 421:547, 2003.  cytic maturation. Mol Cell Biol 22:4268, 2002.
        539.  Stamatoyannopoulos JA: The genomics of gene expression. Genomics   562.  Campbell AE, Wilkinson-White L, Mackay JP, et al: Analysis of disease-
            84:449, 2004.                                         causing GATA1 mutations in murine gene complementation systems.
        540.  Steiner  LA,  Maksimova  Y,  Schulz  V,  et al:  Chromatin  architecture   Blood 121:5218, 2013.
            and  transcription  factor  binding  regulate  expression  of  erythrocyte   563.  Martelli F, Ghinassi B, Panetta B, et al: Variegation of the phenotype
            membrane protein genes. Mol Cell Biol 29:5399, 2009.  induced by the Gata1low mutation in mice of different genetic back-
        541.  Miccio  A,  Wang  Y,  Hong  W,  et al:  NuRD  mediates  activating  and   grounds. Blood 106:4102, 2005.
            repressive functions of GATA-1 and FOG-1 during blood development.   564.  Hollanda  LM,  Lima  CS,  Cunha  AF,  et al:  An  inherited  mutation
            EMBO J 29:442, 2010.                                  leading to production of only the short isoform of GATA-1 is associated
        542.  Gao Z, Huang Z, Olivey HE, et al: FOG-1-mediated recruitment of   with impaired erythropoiesis. Nat Genet 38:807, 2006.
            NuRD is required for cell lineage re-enforcement during haematopoi-  565.  Wechsler  J,  Greene  M,  McDevitt  MA,  et al:  Acquired  mutations  in
            esis. EMBO J 29:457, 2010.                            GATA1  in  the  megakaryoblastic  leukemia  of  Down  syndrome.  Nat
        543.  Varricchio  L,  Dell’Aversana  C,  Nebbioso  A,  et al:  Identification  of   Genet 32:148, 2002.
            NuRSERY, a new functional HDAC complex composed by HDAC5,   566.  Xu  G,  Nagano  M,  Kanezaki  R,  et al:  Frequent  mutations  in  the
            GATA1,  EKLF  and  pERK  present  in  human  erythroid  cells.  Int  J   GATA-1  gene  in  the  transient  myeloproliferative  disorder  of  Down
            Biochem Cell Biol 50:112, 2014.                       syndrome. Blood 102:2960, 2003.
        544.  McKinney-Freeman S, Cahan P, Li H, et al: The transcriptional land-  567.  Ahmed  M,  Sternberg  A,  Hall  G,  et al:  Natural  history  of  GATA1
            scape of hematopoietic stem cell ontogeny. Cell Stem Cell 11:701, 2012.  mutations in Down syndrome. Blood 103:2480, 2004.
        545.  Wu W, Cheng Y, Keller CA, et al: Dynamics of the epigenetic landscape   568.  Harigae H, Xu G, Sugawara T, et al: The GATA1 mutation in an adult
            during erythroid differentiation after GATA1 restoration. Genome Res   patient with acute megakaryoblastic leukemia not accompanying Down
            21:1659, 2011.                                        syndrome. Blood 103:3242, 2004.
        546.  Byon JC, Papayannopoulou T: MicroRNAs: Allies or foes in erythro-  569.  Majewski IJ, Metcalf D, Mielke LA, et al: A mutation in the translation
            poiesis? J Cell Physiol 227:7, 2012.                  initiation  codon  of  Gata-1  disrupts  megakaryocyte  maturation  and
        547.  Jin HL, Kim JS, Kim YJ, et al: Dynamic expression of specific miRNAs   causes thrombocytopenia. Proc Natl Acad Sci USA 103:14146, 2006.
            during erythroid differentiation of human embryonic stem cells. Mol   570.  Li Z, Godinho FJ, Klusmann JH, et al: Developmental stage-selective
            Cells 34:177, 2012.                                   effect of somatically mutated leukemogenic transcription factor GATA1.
        548.  Alvarez-Dominguez  JR,  Hu  W,  Yuan  B,  et al:  Global  discovery  of   Nat Genet 37:613, 2005.
            erythroid  long  noncoding  RNAs  reveals  novel  regulators  of  red  cell   571.  Belloni E, Shing D, Tapinassi C, et al: In vivo expression of an aber-
            maturation. Blood 123:570, 2014.                      rant MYB-GATA1 fusion induces leukemia in the presence of GATA1
        549.  Paralkar VR, Mishra T, Luan J, et al: Lineage and species-specific long   reduced levels. Leukemia 25:733, 2011.
            noncoding RNAs during erythro-megakaryocytic development. Blood   572.  Quelen C, Lippert E, Struski S, et al: Identification of a transforming
            123:1927, 2014.                                       MYB-GATA1 fusion gene in acute basophilic leukemia: a new entity
        550.  Lee YT, de Vasconcellos JF, Yuan J, et al: LIN28B-mediated expression   in male infants. Blood 117:5719, 2011.
            of fetal hemoglobin and production of fetal-like erythrocytes from adult   573.  Shimizu  R,  Kuroha T,  Ohneda  O,  et al:  Leukemogenesis  caused  by
            human erythroblasts ex vivo. Blood 122:1034, 2013.    incapacitated GATA-1 function. Mol Cell Biol 24:10814, 2004.
        551.  de  Vasconcellos  JF,  Fasano  RM,  Lee  YT,  et al:  LIN28A  expression   574.  Vannucchi AM, Bianchi L, Cellai C, et al: Development of myelofibro-
            reduces sickling of cultured human erythrocytes. PLoS ONE 9:e106924,   sis in mice genetically impaired for GATA-1 expression (GATA-1(low)
            2014.                                                 mice). Blood 100:1123, 2002.
        552.  Nichols KE, Crispino JD, Poncz M, et al: Familial dyserythropoietic   575.  Vannucchi  AM,  Pancrazzi  A,  Guglielmelli  P,  et al:  Abnormalities  of
            anaemia  and  thrombocytopenia  due  to  an  inherited  mutation  in   GATA-1 in megakaryocytes from patients with idiopathic myelofibro-
            GATA1. Nat Genet 24:266, 2000.                        sis. Am J Pathol 167:849, 2005.
        553.  Mehaffey  MG,  Newton  AL,  Gandhi  MJ,  et al:  X-linked  thrombo-  576.  Cantor AB: GATA transcription factors in hematologic disease. Int J
            cytopenia  caused  by  a  novel  mutation  of  GATA-1.  Blood  98:2681,   Hematol 81:378, 2005.
            2001.                                             577.  Viprakasit  V,  Ekwattanakit  S,  Riolueang  S,  et al:  Mutations  in
        554.  Del  Vecchio  GC,  Giordani  L,  De  Santis  A,  et al:  Dyserythropoietic   Kruppel-like  factor  1  cause  transfusion-dependent  hemolytic  anemia
            anemia and thrombocytopenia due to a novel mutation in GATA-1.   and persistence of embryonic globin gene expression. Blood 123:1586,
            Acta Haematol 114:113, 2005.                          2014.
        555.  Yu C, Niakan KK, Matsushita M, et al: X-linked thrombocytopenia   578.  Singleton BK, Fairweather VS, Lau W, et al: A novel EKLF mutation in
            with thalassemia from a mutation in the amino finger of GATA-1 affect-  a patient with dyserythropoietic anemia: the first association of EKLF
            ing  DNA  binding  rather  than  FOG-1  interaction.  Blood  100:2040,   with disease in man. ASH Annual Meeting Abstracts 114:162, 2009.
            2002.
   391   392   393   394   395   396   397   398   399   400   401