Page 396 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 396
320.e12 Part IV Disorders of Hematopoietic Cell Development
532. Onodera K, Takahashi S, Nishimura S, et al: GATA-1 transcription 556. Freson K, Devriendt K, Matthijs G, et al: Platelet characteristics in
is controlled by distinct regulatory mechanisms during primitive and patients with X-linked macrothrombocytopenia because of a novel
definitive erythropoiesis. Proc Natl Acad Sci USA 94:4487, 1997. GATA1 mutation. Blood 98:85, 2001.
533. Shalaby F, Ho J, Stanford WL, et al: A requirement for Flk1 in primitive 557. Shimizu R, Ohneda K, Engel JD, et al: Transgenic rescue of GATA-
and definitive hematopoiesis and vasculogenesis. Cell 89:981, 1997. 1-deficient mice with GATA-1 lacking a FOG-1 association site phe-
534. Russell ES: Hereditary anemias of the mouse: a review for geneticists. nocopies patients with X-linked thrombocytopenia. Blood 103:2560,
Adv Genet 20:357, 1979. 2004.
535. Yoshida K, Taga T, Saito M, et al: Targeted disruption of gp130, a 558. Tubman VN, Levine JE, Campagna DR, et al: X-linked gray platelet
common signal transducer for the interleukin 6 family of cytokines, syndrome due to a GATA1 Arg216Gln mutation. Blood 109:3297,
leads to myocardial and hematological disorders. Proc Natl Acad Sci 2007.
USA 93:407, 1996. 559. Åström M, Hahn-Strömberg V, Zetterberg E, et al: X-linked thrombo-
536. Qu CK, Shi ZQ, Shen R, et al: A deletion mutation in the SH2-N cytopenia with thalassemia displays bone marrow reticulin fibrosis and
domain of Shp-2 severely suppresses hematopoietic cell development. enhanced angiogenesis: comparisons with primary myelofibrosis. Am J
Mol Cell Biol 17:5499, 1997. Hematol 90:E44, 2015.
537. Visvader JE, Mao X, Fujiwara Y, et al: The LIM-domain binding 560. Phillips JD, Steensma DP, Pulsipher MA, et al: Congenital erythro-
protein Ldb1 and its partner LMO2 act as negative regulators of poietic porphyria due to a mutation in GATA1: the first trans-acting
erythroid differentiation. Proc Natl Acad Sci USA 94:13707, 1997. mutation causative for a human porphyria. Blood 109:2618, 2007.
538. Mikkola HK, Klintman J, Yang H, et al: Haematopoietic stem cells 561. Cantor AB, Katz SG, Orkin SH: Distinct domains of the GATA-1
retain long-term repopulating activity and multipotency in the absence cofactor FOG-1 differentially influence erythroid versus megakaryo-
of stem-cell leukaemia SCL/tal-1 gene. Nature 421:547, 2003. cytic maturation. Mol Cell Biol 22:4268, 2002.
539. Stamatoyannopoulos JA: The genomics of gene expression. Genomics 562. Campbell AE, Wilkinson-White L, Mackay JP, et al: Analysis of disease-
84:449, 2004. causing GATA1 mutations in murine gene complementation systems.
540. Steiner LA, Maksimova Y, Schulz V, et al: Chromatin architecture Blood 121:5218, 2013.
and transcription factor binding regulate expression of erythrocyte 563. Martelli F, Ghinassi B, Panetta B, et al: Variegation of the phenotype
membrane protein genes. Mol Cell Biol 29:5399, 2009. induced by the Gata1low mutation in mice of different genetic back-
541. Miccio A, Wang Y, Hong W, et al: NuRD mediates activating and grounds. Blood 106:4102, 2005.
repressive functions of GATA-1 and FOG-1 during blood development. 564. Hollanda LM, Lima CS, Cunha AF, et al: An inherited mutation
EMBO J 29:442, 2010. leading to production of only the short isoform of GATA-1 is associated
542. Gao Z, Huang Z, Olivey HE, et al: FOG-1-mediated recruitment of with impaired erythropoiesis. Nat Genet 38:807, 2006.
NuRD is required for cell lineage re-enforcement during haematopoi- 565. Wechsler J, Greene M, McDevitt MA, et al: Acquired mutations in
esis. EMBO J 29:457, 2010. GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat
543. Varricchio L, Dell’Aversana C, Nebbioso A, et al: Identification of Genet 32:148, 2002.
NuRSERY, a new functional HDAC complex composed by HDAC5, 566. Xu G, Nagano M, Kanezaki R, et al: Frequent mutations in the
GATA1, EKLF and pERK present in human erythroid cells. Int J GATA-1 gene in the transient myeloproliferative disorder of Down
Biochem Cell Biol 50:112, 2014. syndrome. Blood 102:2960, 2003.
544. McKinney-Freeman S, Cahan P, Li H, et al: The transcriptional land- 567. Ahmed M, Sternberg A, Hall G, et al: Natural history of GATA1
scape of hematopoietic stem cell ontogeny. Cell Stem Cell 11:701, 2012. mutations in Down syndrome. Blood 103:2480, 2004.
545. Wu W, Cheng Y, Keller CA, et al: Dynamics of the epigenetic landscape 568. Harigae H, Xu G, Sugawara T, et al: The GATA1 mutation in an adult
during erythroid differentiation after GATA1 restoration. Genome Res patient with acute megakaryoblastic leukemia not accompanying Down
21:1659, 2011. syndrome. Blood 103:3242, 2004.
546. Byon JC, Papayannopoulou T: MicroRNAs: Allies or foes in erythro- 569. Majewski IJ, Metcalf D, Mielke LA, et al: A mutation in the translation
poiesis? J Cell Physiol 227:7, 2012. initiation codon of Gata-1 disrupts megakaryocyte maturation and
547. Jin HL, Kim JS, Kim YJ, et al: Dynamic expression of specific miRNAs causes thrombocytopenia. Proc Natl Acad Sci USA 103:14146, 2006.
during erythroid differentiation of human embryonic stem cells. Mol 570. Li Z, Godinho FJ, Klusmann JH, et al: Developmental stage-selective
Cells 34:177, 2012. effect of somatically mutated leukemogenic transcription factor GATA1.
548. Alvarez-Dominguez JR, Hu W, Yuan B, et al: Global discovery of Nat Genet 37:613, 2005.
erythroid long noncoding RNAs reveals novel regulators of red cell 571. Belloni E, Shing D, Tapinassi C, et al: In vivo expression of an aber-
maturation. Blood 123:570, 2014. rant MYB-GATA1 fusion induces leukemia in the presence of GATA1
549. Paralkar VR, Mishra T, Luan J, et al: Lineage and species-specific long reduced levels. Leukemia 25:733, 2011.
noncoding RNAs during erythro-megakaryocytic development. Blood 572. Quelen C, Lippert E, Struski S, et al: Identification of a transforming
123:1927, 2014. MYB-GATA1 fusion gene in acute basophilic leukemia: a new entity
550. Lee YT, de Vasconcellos JF, Yuan J, et al: LIN28B-mediated expression in male infants. Blood 117:5719, 2011.
of fetal hemoglobin and production of fetal-like erythrocytes from adult 573. Shimizu R, Kuroha T, Ohneda O, et al: Leukemogenesis caused by
human erythroblasts ex vivo. Blood 122:1034, 2013. incapacitated GATA-1 function. Mol Cell Biol 24:10814, 2004.
551. de Vasconcellos JF, Fasano RM, Lee YT, et al: LIN28A expression 574. Vannucchi AM, Bianchi L, Cellai C, et al: Development of myelofibro-
reduces sickling of cultured human erythrocytes. PLoS ONE 9:e106924, sis in mice genetically impaired for GATA-1 expression (GATA-1(low)
2014. mice). Blood 100:1123, 2002.
552. Nichols KE, Crispino JD, Poncz M, et al: Familial dyserythropoietic 575. Vannucchi AM, Pancrazzi A, Guglielmelli P, et al: Abnormalities of
anaemia and thrombocytopenia due to an inherited mutation in GATA-1 in megakaryocytes from patients with idiopathic myelofibro-
GATA1. Nat Genet 24:266, 2000. sis. Am J Pathol 167:849, 2005.
553. Mehaffey MG, Newton AL, Gandhi MJ, et al: X-linked thrombo- 576. Cantor AB: GATA transcription factors in hematologic disease. Int J
cytopenia caused by a novel mutation of GATA-1. Blood 98:2681, Hematol 81:378, 2005.
2001. 577. Viprakasit V, Ekwattanakit S, Riolueang S, et al: Mutations in
554. Del Vecchio GC, Giordani L, De Santis A, et al: Dyserythropoietic Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia
anemia and thrombocytopenia due to a novel mutation in GATA-1. and persistence of embryonic globin gene expression. Blood 123:1586,
Acta Haematol 114:113, 2005. 2014.
555. Yu C, Niakan KK, Matsushita M, et al: X-linked thrombocytopenia 578. Singleton BK, Fairweather VS, Lau W, et al: A novel EKLF mutation in
with thalassemia from a mutation in the amino finger of GATA-1 affect- a patient with dyserythropoietic anemia: the first association of EKLF
ing DNA binding rather than FOG-1 interaction. Blood 100:2040, with disease in man. ASH Annual Meeting Abstracts 114:162, 2009.
2002.

