Page 599 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 599

Chapter 38  Heme Biosynthesis and Its Disorders  513.e1

            REFERENCES                                             27.  Salahudeen  AA,  Thompson  JW,  Ruiz  JC,  et al:  An  E3  ligase  pos-
                                                                      sessing an iron-responsive hemerythrin domain is a regulator of iron
             1.  Cox TM, Jack N, Lofthouse S, et al: King George III and porphyria:   homeostasis. Science 326:722, 2009.
                an elemental hypothesis and investigation. Lancet 366:332, 2005.  28.  Vashisht AA, Zumbrennen KB, Huang X, et al: Control of iron homeo-
             2.  Macalpine I, Hunter R, Rimington C: Porphyria in the royal houses of   stasis by an iron-regulated ubiquitin ligase. Science 326:718, 2009.
                Stuart, Hanover, and Prussia. A follow-up study of George 3d’s illness.   29.  Grandchamp  B,  De  Verneuil  H,  Beaumont  C,  et al:  Tissue-specific
                Br Med J 1:7, 1968.                                   expression  of  porphobilinogen  deaminase.  Two  isoenzymes  from  a
             3.  Röhl JCG, Warren M, Hunt D: Purple Secret. Genes, ‘Madness’ and the   single gene. Eur J Biochem 162:105, 1987.
                Royal Houses of Europe, London, 1998, Bantam Press.  30.  Sassa  S:  Hematologic  aspects  of  the  porphyrias.  Int  J  Hematol  71:1,
             4.  Loftus LS, Arnold WN: Vincent van Gogh’s illness: acute intermittent   2000.
                porphyria? BMJ 303:1589, 1991.                     31.  Shoolingin-Jordan  PM:  Porphobilinogen  deaminase  and  uroporphy-
             5.  Hift RJ, Peters TJ, Meissner PN: A review of the clinical presentation,   rinogen III synthase: structure, molecular biology, and mechanism. J
                natural history and inheritance of variegate porphyria: its implausibility   Bioenerg Biomembr 27:181, 1995.
                as the source of the ‘Royal Malady’. J Clin Pathol 65:200, 2012.  32.  Mgone CS, Lanyon WG, Moore MR, et al: Detection of a high muta-
             6.  Chiabrando D, Marro S, Mercurio S, et al: The mitochondrial heme   tion  frequency  in  exon  12  of  the  porphobilinogen  deaminase  gene
                exporter  FLVCR1b  mediates  erythroid  differentiation.  J  Clin  Invest   in  patients  with  acute  intermittent  porphyria.  Hum  Genet  92:619,
                122:2012.                                             1993.
             7.  Anderson KE, Bloomer JR, Bonkovsky HL, et al: Recommendations   33.  Gill R, Kolstoe SE, Mohammed F, et al: Structure of human porpho-
                for the diagnosis and treatment of the acute porphyrias. Ann Intern Med   bilinogen deaminase at 2.8 A: the molecular basis of acute intermittent
                142:439, 2005.                                        porphyria. Biochem J 420:17, 2009.
             8.  Heinemann IU, Jahn M, Jahn D: The biochemistry of heme biosyn-  34.  Whatley SD, Ducamp S, Gouya L, et al: C-terminal deletions in the
                thesis. Arch Biochem Biophys 474:238, 2008.           ALAS2  gene  lead  to  gain  of  function  and  cause  X-linked  dominant
             9.  Sassa  S:  Modern  diagnosis  and  management  of  the  porphyrias.  Br  J   protoporphyria  without  anemia  or  iron  overload.  Am  J  Hum  Genet
                Haematol 135:281, 2006.                               83:408, 2008.
             10.  Schultz IJ, Chen C, Paw BH, et al: Iron and porphyrin trafficking in   35.  Meissner P: Enzyme studies in variegate porphyria [thesis], South Africa.,
                heme biogenesis. J Biol Chem 285:26753, 2010.         1990, Cape Town, University of Cape Town.
             11.  Bottomley  SS,  Fleming  MD:  Sideroblastic  anemia:  diagnosis  and   36.  Brodie  MJ,  Moore  MR,  Goldberg  A:  Enzyme  abnormalities  in  the
                management. Hematol Oncol Clin North Am 28:653, 2014.  porphyrias. Lancet 2:699, 1977.
             12.  Malcovati L, Cazzola M: Refractory anemia with ring sideroblasts. Best   37.  Lin CS, Krishnan AV, Lee MJ, et al: Nerve function and dysfunction
                Pract Res Clin Haematol 26:377, 2013.                 in acute intermittent porphyria. Brain 131:2510, 2008.
             13.  Richardson DR, Lane DJ, Becker EM, et al: Mitochondrial iron traffick-  38.  Emanuelli T, Pagel FW, Porciuncula LO, et al: Effects of 5-aminolevulinic
                ing and the integration of iron metabolism between the mitochondrion   acid on the glutamatergic neurotransmission. Neurochem Int 42:115,
                and cytosol. Proc Natl Acad Sci USA 107:10775, 2010.  2003.
             14.  Chiabrando D, Mercurio S, Tolosano E: Heme and erythropoieis: more   39.  Felitsyn N, McLeod C, Shroads AL, et al: The heme precursor delta-
                than a structural role. Haematologica 99:973, 2014.   aminolevulinate  blocks  peripheral  myelin  formation.  J  Neurochem
             15.  Cox  TC,  Bawden  MJ,  Martin  A,  et al:  Human  erythroid   106:2068, 2008.
                5-aminolevulinate  synthase:  promoter  analysis  and  identification   40.  Monteiro HP, Bechara EJ, Abdalla DS: Free radicals involvement in
                of  an  iron-responsive  element  in  the  mRNA.  EMBO  J  10:1891,   neurological porphyrias and lead poisoning. Mol Cell Biochem 103:73,
                1991.                                                 1991.
             16.  Tian  Q,  Li T,  Hou  W,  et al:  Lon  peptidase  1  (LONP1)-dependent   41.  Thunell S, Andersson C, Carlmark B, et al: Markers for vulnerability
                breakdown of mitochondrial 5-aminolevulinic acid synthase protein by   in acute porphyria. A hypothesis paper. Eur J Clin Chem Clin Biochem
                heme in human liver cells. J Biol Chem 286:26424, 2011.  33:179, 1995.
             17.  Granick  JL,  Sassa  S:  Hemin  control  of  heme  biosynthesis  in  mouse   42.  Costa CA, Trivelato GC, Pinto AM, et al: Correlation between plasma
                Friend virus-transformed erythroleukemia cells in culture. J Biol Chem   5-aminolevulinic acid concentrations and indicators of oxidative stress
                253:5402, 1978.                                       in lead-exposed workers. Clin Chem 43:1196, 1997.
             18.  Conboy  JG,  Cox  TC,  Bottomley  SS,  et al:  Human  erythroid   43.  Bermudez  Moretti  M,  Correa  Garcia  S,  Ramos  E,  et al:  delta-
                5-aminolevulinate synthase. Gene structure and species-specific differ-  Aminolevulinic acid uptake is mediated by the gamma-aminobutyric
                ences in alternative RNA splicing. J Biol Chem 267:18753, 1992.  acid-specific permease UGA4. Cell Mol Biol (Noisy-Le-Grand) 42:519,
             19.  Furuyama K, Sassa S: Interaction between succinyl CoA synthetase and   1996.
                the  heme-biosynthetic  enzyme  ALAS-E  is  disrupted  in  sideroblastic   44.  Hindmarsh JT, Oliveras L, Greenway DC: Plasma porphyrins in the
                anemia. J Clin Invest 105:757, 2000.                  porphyrias. Clin Chem 45:1070, 1999.
             20.  Handschin C, Lin J, Rhee J, et al: Nutritional regulation of hepatic   45.  Macours P, Cotton F: Improvement in HPLC separation of porphyrin
                heme biosynthesis and porphyria through PGC-1alpha. Cell 122:505,   isomers and application to biochemical diagnosis of porphyrias. Clin
                2005.                                                 Chem Lab Med 44:1433, 2006.
             21.  Phillips JD, Kushner JP: Fast track to the porphyrias. Nat Med 11:1049,   46.  Blake D, PV, Rossi R: Diagnosis of porphyria-recommended methods
                2005.                                                 for peripheral laboratories. Clin Biochem Rev 3:S1, 1992.
             22.  Shaw GC, Cope JJ, Li L, et al: Mitoferrin is essential for erythroid iron   47.  McColl  KE,  Thompson  GG,  Moore  MR,  et al:  Chester  porphyria:
                assimilation. Nature 440:96, 2006.                    biochemical studies of a new form of acute porphyria. Lancet 2:796,
             23.  Chen W, Paradkar PN, Li L, et al: Abcb10 physically interacts with   1985.
                mitoferrin-1  (Slc25a37)  to  enhance  its  stability  and  function  in  the   48.  Poblete-Gutierrez P, Wiederholt T, Martinez-Mir A, et al: Demystifica-
                erythroid mitochondria. Proc Natl Acad Sci USA 106:16263, 2009.  tion of Chester porphyria: a nonsense mutation in the Porphobilinogen
             24.  Hentze  MW,  Muckenthaler  MU,  Andrews  NC:  Balancing  acts:   Deaminase gene. Physiol Res 55(Suppl 2):S137, 2006.
                molecular  control  of  mammalian  iron  metabolism.  Cell  117:285,   49.  Meissner PN, Dailey TA, Hift RJ, et al: A R59W mutation in human
                2004.                                                 protoporphyrinogen oxidase results in decreased enzyme activity and is
             25.  Muckenthaler M, Gray NK, Hentze MW: IRP-1 binding to ferritin   prevalent in South Africans with variegate porphyria. Nat Genet 13:95,
                mRNA prevents the recruitment of the small ribosomal subunit by the   1996.
                cap-binding complex eIF4F. Mol Cell 2:383, 1998.   50.  van Tuyll van Serooskerken AM, Drogemoller BI, Te Velde K, et al:
             26.  Hentze MW, Kuhn LC: Molecular control of vertebrate iron metabo-  Extended  haplotype  studies  in  South  African  and  Dutch  variegate
                lism: mRNA-based regulatory circuits operated by iron, nitric oxide,   porphyria families carrying the recurrent p.R59W mutation confirm a
                and oxidative stress. Proc Natl Acad Sci USA 93:8175, 1996.  common ancestry. Br J Dermatol 166:261, 2012.
   594   595   596   597   598   599   600   601   602   603   604