Page 599 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 599
Chapter 38 Heme Biosynthesis and Its Disorders 513.e1
REFERENCES 27. Salahudeen AA, Thompson JW, Ruiz JC, et al: An E3 ligase pos-
sessing an iron-responsive hemerythrin domain is a regulator of iron
1. Cox TM, Jack N, Lofthouse S, et al: King George III and porphyria: homeostasis. Science 326:722, 2009.
an elemental hypothesis and investigation. Lancet 366:332, 2005. 28. Vashisht AA, Zumbrennen KB, Huang X, et al: Control of iron homeo-
2. Macalpine I, Hunter R, Rimington C: Porphyria in the royal houses of stasis by an iron-regulated ubiquitin ligase. Science 326:718, 2009.
Stuart, Hanover, and Prussia. A follow-up study of George 3d’s illness. 29. Grandchamp B, De Verneuil H, Beaumont C, et al: Tissue-specific
Br Med J 1:7, 1968. expression of porphobilinogen deaminase. Two isoenzymes from a
3. Röhl JCG, Warren M, Hunt D: Purple Secret. Genes, ‘Madness’ and the single gene. Eur J Biochem 162:105, 1987.
Royal Houses of Europe, London, 1998, Bantam Press. 30. Sassa S: Hematologic aspects of the porphyrias. Int J Hematol 71:1,
4. Loftus LS, Arnold WN: Vincent van Gogh’s illness: acute intermittent 2000.
porphyria? BMJ 303:1589, 1991. 31. Shoolingin-Jordan PM: Porphobilinogen deaminase and uroporphy-
5. Hift RJ, Peters TJ, Meissner PN: A review of the clinical presentation, rinogen III synthase: structure, molecular biology, and mechanism. J
natural history and inheritance of variegate porphyria: its implausibility Bioenerg Biomembr 27:181, 1995.
as the source of the ‘Royal Malady’. J Clin Pathol 65:200, 2012. 32. Mgone CS, Lanyon WG, Moore MR, et al: Detection of a high muta-
6. Chiabrando D, Marro S, Mercurio S, et al: The mitochondrial heme tion frequency in exon 12 of the porphobilinogen deaminase gene
exporter FLVCR1b mediates erythroid differentiation. J Clin Invest in patients with acute intermittent porphyria. Hum Genet 92:619,
122:2012. 1993.
7. Anderson KE, Bloomer JR, Bonkovsky HL, et al: Recommendations 33. Gill R, Kolstoe SE, Mohammed F, et al: Structure of human porpho-
for the diagnosis and treatment of the acute porphyrias. Ann Intern Med bilinogen deaminase at 2.8 A: the molecular basis of acute intermittent
142:439, 2005. porphyria. Biochem J 420:17, 2009.
8. Heinemann IU, Jahn M, Jahn D: The biochemistry of heme biosyn- 34. Whatley SD, Ducamp S, Gouya L, et al: C-terminal deletions in the
thesis. Arch Biochem Biophys 474:238, 2008. ALAS2 gene lead to gain of function and cause X-linked dominant
9. Sassa S: Modern diagnosis and management of the porphyrias. Br J protoporphyria without anemia or iron overload. Am J Hum Genet
Haematol 135:281, 2006. 83:408, 2008.
10. Schultz IJ, Chen C, Paw BH, et al: Iron and porphyrin trafficking in 35. Meissner P: Enzyme studies in variegate porphyria [thesis], South Africa.,
heme biogenesis. J Biol Chem 285:26753, 2010. 1990, Cape Town, University of Cape Town.
11. Bottomley SS, Fleming MD: Sideroblastic anemia: diagnosis and 36. Brodie MJ, Moore MR, Goldberg A: Enzyme abnormalities in the
management. Hematol Oncol Clin North Am 28:653, 2014. porphyrias. Lancet 2:699, 1977.
12. Malcovati L, Cazzola M: Refractory anemia with ring sideroblasts. Best 37. Lin CS, Krishnan AV, Lee MJ, et al: Nerve function and dysfunction
Pract Res Clin Haematol 26:377, 2013. in acute intermittent porphyria. Brain 131:2510, 2008.
13. Richardson DR, Lane DJ, Becker EM, et al: Mitochondrial iron traffick- 38. Emanuelli T, Pagel FW, Porciuncula LO, et al: Effects of 5-aminolevulinic
ing and the integration of iron metabolism between the mitochondrion acid on the glutamatergic neurotransmission. Neurochem Int 42:115,
and cytosol. Proc Natl Acad Sci USA 107:10775, 2010. 2003.
14. Chiabrando D, Mercurio S, Tolosano E: Heme and erythropoieis: more 39. Felitsyn N, McLeod C, Shroads AL, et al: The heme precursor delta-
than a structural role. Haematologica 99:973, 2014. aminolevulinate blocks peripheral myelin formation. J Neurochem
15. Cox TC, Bawden MJ, Martin A, et al: Human erythroid 106:2068, 2008.
5-aminolevulinate synthase: promoter analysis and identification 40. Monteiro HP, Bechara EJ, Abdalla DS: Free radicals involvement in
of an iron-responsive element in the mRNA. EMBO J 10:1891, neurological porphyrias and lead poisoning. Mol Cell Biochem 103:73,
1991. 1991.
16. Tian Q, Li T, Hou W, et al: Lon peptidase 1 (LONP1)-dependent 41. Thunell S, Andersson C, Carlmark B, et al: Markers for vulnerability
breakdown of mitochondrial 5-aminolevulinic acid synthase protein by in acute porphyria. A hypothesis paper. Eur J Clin Chem Clin Biochem
heme in human liver cells. J Biol Chem 286:26424, 2011. 33:179, 1995.
17. Granick JL, Sassa S: Hemin control of heme biosynthesis in mouse 42. Costa CA, Trivelato GC, Pinto AM, et al: Correlation between plasma
Friend virus-transformed erythroleukemia cells in culture. J Biol Chem 5-aminolevulinic acid concentrations and indicators of oxidative stress
253:5402, 1978. in lead-exposed workers. Clin Chem 43:1196, 1997.
18. Conboy JG, Cox TC, Bottomley SS, et al: Human erythroid 43. Bermudez Moretti M, Correa Garcia S, Ramos E, et al: delta-
5-aminolevulinate synthase. Gene structure and species-specific differ- Aminolevulinic acid uptake is mediated by the gamma-aminobutyric
ences in alternative RNA splicing. J Biol Chem 267:18753, 1992. acid-specific permease UGA4. Cell Mol Biol (Noisy-Le-Grand) 42:519,
19. Furuyama K, Sassa S: Interaction between succinyl CoA synthetase and 1996.
the heme-biosynthetic enzyme ALAS-E is disrupted in sideroblastic 44. Hindmarsh JT, Oliveras L, Greenway DC: Plasma porphyrins in the
anemia. J Clin Invest 105:757, 2000. porphyrias. Clin Chem 45:1070, 1999.
20. Handschin C, Lin J, Rhee J, et al: Nutritional regulation of hepatic 45. Macours P, Cotton F: Improvement in HPLC separation of porphyrin
heme biosynthesis and porphyria through PGC-1alpha. Cell 122:505, isomers and application to biochemical diagnosis of porphyrias. Clin
2005. Chem Lab Med 44:1433, 2006.
21. Phillips JD, Kushner JP: Fast track to the porphyrias. Nat Med 11:1049, 46. Blake D, PV, Rossi R: Diagnosis of porphyria-recommended methods
2005. for peripheral laboratories. Clin Biochem Rev 3:S1, 1992.
22. Shaw GC, Cope JJ, Li L, et al: Mitoferrin is essential for erythroid iron 47. McColl KE, Thompson GG, Moore MR, et al: Chester porphyria:
assimilation. Nature 440:96, 2006. biochemical studies of a new form of acute porphyria. Lancet 2:796,
23. Chen W, Paradkar PN, Li L, et al: Abcb10 physically interacts with 1985.
mitoferrin-1 (Slc25a37) to enhance its stability and function in the 48. Poblete-Gutierrez P, Wiederholt T, Martinez-Mir A, et al: Demystifica-
erythroid mitochondria. Proc Natl Acad Sci USA 106:16263, 2009. tion of Chester porphyria: a nonsense mutation in the Porphobilinogen
24. Hentze MW, Muckenthaler MU, Andrews NC: Balancing acts: Deaminase gene. Physiol Res 55(Suppl 2):S137, 2006.
molecular control of mammalian iron metabolism. Cell 117:285, 49. Meissner PN, Dailey TA, Hift RJ, et al: A R59W mutation in human
2004. protoporphyrinogen oxidase results in decreased enzyme activity and is
25. Muckenthaler M, Gray NK, Hentze MW: IRP-1 binding to ferritin prevalent in South Africans with variegate porphyria. Nat Genet 13:95,
mRNA prevents the recruitment of the small ribosomal subunit by the 1996.
cap-binding complex eIF4F. Mol Cell 2:383, 1998. 50. van Tuyll van Serooskerken AM, Drogemoller BI, Te Velde K, et al:
26. Hentze MW, Kuhn LC: Molecular control of vertebrate iron metabo- Extended haplotype studies in South African and Dutch variegate
lism: mRNA-based regulatory circuits operated by iron, nitric oxide, porphyria families carrying the recurrent p.R59W mutation confirm a
and oxidative stress. Proc Natl Acad Sci USA 93:8175, 1996. common ancestry. Br J Dermatol 166:261, 2012.

