Page 602 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 602

513.e4  Part V  Red Blood Cells


        147.  Hift RJ, Meissner PN, Todd G, et al: Homozygous variegate porphyria:   diagnosed with acquired refractory anemia and ringed sideroblasts. J
            an evolving clinical syndrome. Postgrad Med J 69:781, 1993.  Clin Invest 96:2090, 1995.
        148.  Pimstone NR, Gandhi SN, Mukerji SK: Therapeutic efficacy of oral   172.  Cazzola M, Barosi G, Bergamaschi G, et al: Iron loading in congenital
            charcoal in congenital erythropoietic porphyria. N Engl J Med 316:390,   dyserythropoietic anaemias and congenital sideroblastic anaemias. Br J
            1987.                                                 Haematol 54:649, 1983.
        149.  Merino  A, To-Figueras  J,  Herrero  C:  Atypical  red  cell  inclusions  in   173.  Peto TE, Pippard MJ, Weatherall DJ: Iron overload in mild sideroblastic
            congenital erythropoietic porphyria. Br J Haematol 132:124, 2006.  anaemias. Lancet 1:375, 1983.
        150.  Cazzola M, Invernizzi R, Bergamaschi G, et al: Mitochondrial ferritin   174.  Bottomley  SS:  The  hemochromatosis  of  sideroblastic  and  other  non-
            expression in erythroid cells from patients with sideroblastic anemia.   thalassemic  anemias.  Haemochromatosis:  genetics,  pathophysiology,
            Blood 101:1996, 2003.                                 diagnosis and treatment, Cambridge, UK, 2000, Cambridge University
        151.  Levi  S,  Corsi  B,  Bosisio  M,  et al:  A  human  mitochondrial  ferritin   Press, p 442.
            encoded by an intronless gene. J Biol Chem 276:24437, 2001.  175.  Parry GJ, Bredesen DE: Sensory neuropathy with low-dose pyridoxine.
        152.  Bjorkman  SE:  Chronic  refractory  anemia  with  sideroblastic  bone   Neurology 35:1466, 1985.
            marrow; a study of four cases. Blood 11:250, 1956.  176.  Bergmann AK, Sahai I, Falcone JF, et al: Thiamine-responsive mega-
        153.  Dacie JV, Smith MD, White JC, et al: Refractory normoblastic anaemia:   loblastic anemia: identification of novel compound heterozygotes and
            a clinical and haematological study of seven cases. Br J Haematol 5:26,   mutation update. J Pediatr 155:888, 2009.
            1959.                                             177.  Gonzalez MI, Caballero D, Vazquez L, et al: Allogeneic peripheral stem
        154.  Cooley  TB:  A  severe  type  of  hereditary  anemia  with  elliptocytosis.   cell transplantation in a case of hereditary sideroblastic anaemia. Br J
            Interesting sequence of splenectomy. Am J Med Sci 209:561, 1945.  Haematol 109:658, 2000.
        155.  Ducamp  S,  Kannengiesser  C, Touati  M,  et al:  Sideroblastic  anemia:   178.  Camaschella C, Campanella A, De Falco L, et al: The human counter-
            molecular analysis of the ALAS2 gene in a series of 29 probands and   part of zebrafish shiraz shows sideroblastic-like microcytic anemia and
            functional studies of 10 missense mutations. Hum Mutat 32:590, 2011.  iron overload. Blood 110:1353, 2007.
        156.  Bottomley SS, Healy HM, Brandenburg MA, et al: 5-Aminolevulinate   179.  Guernsey DL, Jiang H, Campagna DR, et al: Mutations in mitochon-
            synthase in sideroblastic anemias: mRNA and enzyme activity levels in   drial  carrier  family  gene  SLC25A38  cause  nonsyndromic  autosomal
            bone marrow cells. Am J Hematol 41:76, 1992.          recessive congenital sideroblastic anemia. Nat Genet 41:651, 2009.
        157.  Cox TC, Bottomley SS, Wiley JS, et al: X-linked pyridoxine-responsive   180.  Wingert RA, Galloway JL, Barut B, et al: Deficiency of glutaredoxin 5
            sideroblastic anemia due to a Thr388-to-Ser substitution in erythroid   reveals Fe-S clusters are required for vertebrate haem synthesis. Nature
            5-aminolevulinate synthase. N Engl J Med 330:675, 1994.  436:1035, 2005.
        158.  Cox TC, Bawden MJ, Abraham NG, et al: Erythroid 5-aminolevulinate   181.  Gagne  KE,  Ghazvinian  R,  Yuan  D,  et al:  Pearson  marrow  pancreas
            synthase is located on the X chromosome. Am J Hum Genet 46:107,   syndrome  in  patients  suspected  to  have  Diamond-Blackfan  anemia.
            1990.                                                 Blood 124:437, 2014.
        159.  Fleming MD: The genetics of inherited sideroblastic anemias. Semin   182.  Pearson HA, Lobel JS, Kocoshis SA, et al: A new syndrome of refrac-
            Hematol 39:270, 2002.                                 tory sideroblastic anemia with vacuolization of marrow precursors and
        160.  Bergmann  AK,  Campagna  DR,  McLoughlin  EM,  et al:  Systematic   exocrine pancreatic dysfunction. J Pediatr 95:976, 1979.
            molecular genetic analysis of congenital sideroblastic anemia: evidence   183.  McShane  MA,  Hammans  SR,  Sweeney  M,  et al:  Pearson  syndrome
            for genetic heterogeneity and identification of novel mutations. Pediatr   and mitochondrial encephalomyopathy in a patient with a deletion of
            Blood Cancer 54:273, 2010.                            mtDNA. Am J Hum Genet 48:39, 1991.
        161.  Liu G, Guo S, Kang H, et al: Mutation spectrum in Chinese patients   184.  Rotig A, Cormier V, Blanche S, et al: Pearson’s marrow-pancreas syn-
            affected by congenital sideroblastic anemia and a search for a genotype-  drome. A multisystem mitochondrial disorder in infancy. J Clin Invest
            phenotype relationship. Haematologica 98:e158, 2013.  86:1601, 1990.
        162.  Campagna DR, de Bie CI, Schmitz-Abe K, et al: X-linked sideroblastic   185.  Allikmets R, Raskind WH, Hutchinson A, et al: Mutation of a putative
            anemia due to ALAS2 intron 1 enhancer element GATA-binding site   mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic
            mutations. Am J Hematol 89:315, 2014.                 anemia and ataxia (XLSA/A). Hum Mol Genet 8:743, 1999.
        163.  Kaneko  K,  Furuyama  K,  Fujiwara T,  et al:  Identification  of  a  novel   186.  Bekri  S,  Kispal  G,  Lange  H,  et al:  Human  ABC7  transporter:  gene
            erythroid-specific enhancer for the ALAS2 gene and its loss-of-function   structure  and  mutation  causing  X-linked  sideroblastic  anemia  with
            mutation  which  is  associated  with  congenital  sideroblastic  anemia.   ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood
            Haematologica 99:252, 2014.                           96:3256, 2000.
        164.  Furuyama K, Harigae H, Heller T, et al: Arg452 substitution of the   187.  Pondarre C, Antiochos BB, Campagna DR, et al: The mitochondrial
            erythroid-specific 5-aminolaevulinate synthase, a hot spot mutation in   ATP-binding cassette transporter Abcb7 is essential in mice and partici-
            X-linked sideroblastic anaemia, does not itself affect enzyme activity.   pates in cytosolic iron-sulfur cluster biogenesis. Hum Mol Genet 15:953,
            Eur J Haematol 76:33, 2006.                           2006.
        165.  Bottomley  SS:  Congenital  sideroblastic  anemias.  Curr  Hematol  Rep   188.  D’Hooghe  M,  Selleslag  D,  Mortier  G,  et al:  X-linked  sideroblastic
            5:41, 2006.                                           anemia and ataxia: a new family with identification of a fourth ABCB7
        166.  Furuyama K, Fujita H, Nagai T, et al: Pyridoxine refractory X-linked   gene mutation. Eur J Paediatr Neurol 16:2012.
            sideroblastic  anemia  caused  by  a  point  mutation  in  the  erythroid   189.  Pondarre  C,  Campagna  DR,  Antiochos  B,  et al:  Abcb7,  the  gene
            5-aminolevulinate synthase gene. Blood 90:822, 1997.  responsible for X-linked sideroblastic anemia with ataxia, is essential
        167.  Harigae H, Furuyama K: Hereditary sideroblastic anemia: pathophysi-  for hematopoiesis. Blood 109:3567, 2007.
            ology and gene mutations. Int J Hematol 92:425, 2010.  190.  Taketani  S,  Kakimoto  K,  Ueta  H,  et al:  Involvement  of  ABC7  in
        168.  Prasad  AS,  Tranchida  L,  Konno  ET,  et al:  Hereditary  sideroblastic   the biosynthesis of heme in erythroid cells: interaction of ABC7 with
            anemia and glucose-6-phosphate dehydrogenase deficiency in a Negro   ferrochelatase. Blood 101:3274, 2003.
            family. J Clin Invest 47:1415, 1968.              191.  Labay V, Raz T, Baron D, et al: Mutations in SLC19A2 cause thiamine-
        169.  Raskind  WH,  Wijsman  E,  Pagon  RA,  et al:  X-linked  sideroblastic   responsive megaloblastic anaemia associated with diabetes mellitus and
            anemia and ataxia: linkage to phosphoglycerate kinase at Xq13. Am J   deafness. Nat Genet 22:300, 1999.
            Hum Genet 48:335, 1991.                           192.  Bykhovskaya  Y,  Casas  K,  Mengesha  E,  et al:  Missense  mutation  in
        170.  Aivado M, Gattermann N, Rong A, et al: X-linked sideroblastic anemia   pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and
            associated  with  a  novel  ALAS2  mutation  and  unfortunate  skewed   sideroblastic anemia (MLASA). Am J Hum Genet 74:1303, 2004.
            X-chromosome inactivation patterns. Blood Cells Mol Dis 37:40, 2006.  193.  Patton JR, Bykhovskaya Y, Mengesha E, et al: Mitochondrial myopathy
        171.  Cotter PD, May A, Fitzsimons EJ, et al: Late-onset X-linked sideroblas-  and  sideroblastic  anemia  (MLASA):  missense  mutation  in  the  pseu-
            tic anemia. Missense mutations in the erythroid delta-aminolevulinate   douridine synthase 1 (PUS1) gene is associated with the loss of tRNA
            synthase (ALAS2) gene in two pyridoxine-responsive patients initially   pseudouridylation. J Biol Chem 280:19823, 2005.
   597   598   599   600   601   602   603   604   605   606   607