Page 602 - Hematology_ Basic Principles and Practice ( PDFDrive )
P. 602
513.e4 Part V Red Blood Cells
147. Hift RJ, Meissner PN, Todd G, et al: Homozygous variegate porphyria: diagnosed with acquired refractory anemia and ringed sideroblasts. J
an evolving clinical syndrome. Postgrad Med J 69:781, 1993. Clin Invest 96:2090, 1995.
148. Pimstone NR, Gandhi SN, Mukerji SK: Therapeutic efficacy of oral 172. Cazzola M, Barosi G, Bergamaschi G, et al: Iron loading in congenital
charcoal in congenital erythropoietic porphyria. N Engl J Med 316:390, dyserythropoietic anaemias and congenital sideroblastic anaemias. Br J
1987. Haematol 54:649, 1983.
149. Merino A, To-Figueras J, Herrero C: Atypical red cell inclusions in 173. Peto TE, Pippard MJ, Weatherall DJ: Iron overload in mild sideroblastic
congenital erythropoietic porphyria. Br J Haematol 132:124, 2006. anaemias. Lancet 1:375, 1983.
150. Cazzola M, Invernizzi R, Bergamaschi G, et al: Mitochondrial ferritin 174. Bottomley SS: The hemochromatosis of sideroblastic and other non-
expression in erythroid cells from patients with sideroblastic anemia. thalassemic anemias. Haemochromatosis: genetics, pathophysiology,
Blood 101:1996, 2003. diagnosis and treatment, Cambridge, UK, 2000, Cambridge University
151. Levi S, Corsi B, Bosisio M, et al: A human mitochondrial ferritin Press, p 442.
encoded by an intronless gene. J Biol Chem 276:24437, 2001. 175. Parry GJ, Bredesen DE: Sensory neuropathy with low-dose pyridoxine.
152. Bjorkman SE: Chronic refractory anemia with sideroblastic bone Neurology 35:1466, 1985.
marrow; a study of four cases. Blood 11:250, 1956. 176. Bergmann AK, Sahai I, Falcone JF, et al: Thiamine-responsive mega-
153. Dacie JV, Smith MD, White JC, et al: Refractory normoblastic anaemia: loblastic anemia: identification of novel compound heterozygotes and
a clinical and haematological study of seven cases. Br J Haematol 5:26, mutation update. J Pediatr 155:888, 2009.
1959. 177. Gonzalez MI, Caballero D, Vazquez L, et al: Allogeneic peripheral stem
154. Cooley TB: A severe type of hereditary anemia with elliptocytosis. cell transplantation in a case of hereditary sideroblastic anaemia. Br J
Interesting sequence of splenectomy. Am J Med Sci 209:561, 1945. Haematol 109:658, 2000.
155. Ducamp S, Kannengiesser C, Touati M, et al: Sideroblastic anemia: 178. Camaschella C, Campanella A, De Falco L, et al: The human counter-
molecular analysis of the ALAS2 gene in a series of 29 probands and part of zebrafish shiraz shows sideroblastic-like microcytic anemia and
functional studies of 10 missense mutations. Hum Mutat 32:590, 2011. iron overload. Blood 110:1353, 2007.
156. Bottomley SS, Healy HM, Brandenburg MA, et al: 5-Aminolevulinate 179. Guernsey DL, Jiang H, Campagna DR, et al: Mutations in mitochon-
synthase in sideroblastic anemias: mRNA and enzyme activity levels in drial carrier family gene SLC25A38 cause nonsyndromic autosomal
bone marrow cells. Am J Hematol 41:76, 1992. recessive congenital sideroblastic anemia. Nat Genet 41:651, 2009.
157. Cox TC, Bottomley SS, Wiley JS, et al: X-linked pyridoxine-responsive 180. Wingert RA, Galloway JL, Barut B, et al: Deficiency of glutaredoxin 5
sideroblastic anemia due to a Thr388-to-Ser substitution in erythroid reveals Fe-S clusters are required for vertebrate haem synthesis. Nature
5-aminolevulinate synthase. N Engl J Med 330:675, 1994. 436:1035, 2005.
158. Cox TC, Bawden MJ, Abraham NG, et al: Erythroid 5-aminolevulinate 181. Gagne KE, Ghazvinian R, Yuan D, et al: Pearson marrow pancreas
synthase is located on the X chromosome. Am J Hum Genet 46:107, syndrome in patients suspected to have Diamond-Blackfan anemia.
1990. Blood 124:437, 2014.
159. Fleming MD: The genetics of inherited sideroblastic anemias. Semin 182. Pearson HA, Lobel JS, Kocoshis SA, et al: A new syndrome of refrac-
Hematol 39:270, 2002. tory sideroblastic anemia with vacuolization of marrow precursors and
160. Bergmann AK, Campagna DR, McLoughlin EM, et al: Systematic exocrine pancreatic dysfunction. J Pediatr 95:976, 1979.
molecular genetic analysis of congenital sideroblastic anemia: evidence 183. McShane MA, Hammans SR, Sweeney M, et al: Pearson syndrome
for genetic heterogeneity and identification of novel mutations. Pediatr and mitochondrial encephalomyopathy in a patient with a deletion of
Blood Cancer 54:273, 2010. mtDNA. Am J Hum Genet 48:39, 1991.
161. Liu G, Guo S, Kang H, et al: Mutation spectrum in Chinese patients 184. Rotig A, Cormier V, Blanche S, et al: Pearson’s marrow-pancreas syn-
affected by congenital sideroblastic anemia and a search for a genotype- drome. A multisystem mitochondrial disorder in infancy. J Clin Invest
phenotype relationship. Haematologica 98:e158, 2013. 86:1601, 1990.
162. Campagna DR, de Bie CI, Schmitz-Abe K, et al: X-linked sideroblastic 185. Allikmets R, Raskind WH, Hutchinson A, et al: Mutation of a putative
anemia due to ALAS2 intron 1 enhancer element GATA-binding site mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic
mutations. Am J Hematol 89:315, 2014. anemia and ataxia (XLSA/A). Hum Mol Genet 8:743, 1999.
163. Kaneko K, Furuyama K, Fujiwara T, et al: Identification of a novel 186. Bekri S, Kispal G, Lange H, et al: Human ABC7 transporter: gene
erythroid-specific enhancer for the ALAS2 gene and its loss-of-function structure and mutation causing X-linked sideroblastic anemia with
mutation which is associated with congenital sideroblastic anemia. ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood
Haematologica 99:252, 2014. 96:3256, 2000.
164. Furuyama K, Harigae H, Heller T, et al: Arg452 substitution of the 187. Pondarre C, Antiochos BB, Campagna DR, et al: The mitochondrial
erythroid-specific 5-aminolaevulinate synthase, a hot spot mutation in ATP-binding cassette transporter Abcb7 is essential in mice and partici-
X-linked sideroblastic anaemia, does not itself affect enzyme activity. pates in cytosolic iron-sulfur cluster biogenesis. Hum Mol Genet 15:953,
Eur J Haematol 76:33, 2006. 2006.
165. Bottomley SS: Congenital sideroblastic anemias. Curr Hematol Rep 188. D’Hooghe M, Selleslag D, Mortier G, et al: X-linked sideroblastic
5:41, 2006. anemia and ataxia: a new family with identification of a fourth ABCB7
166. Furuyama K, Fujita H, Nagai T, et al: Pyridoxine refractory X-linked gene mutation. Eur J Paediatr Neurol 16:2012.
sideroblastic anemia caused by a point mutation in the erythroid 189. Pondarre C, Campagna DR, Antiochos B, et al: Abcb7, the gene
5-aminolevulinate synthase gene. Blood 90:822, 1997. responsible for X-linked sideroblastic anemia with ataxia, is essential
167. Harigae H, Furuyama K: Hereditary sideroblastic anemia: pathophysi- for hematopoiesis. Blood 109:3567, 2007.
ology and gene mutations. Int J Hematol 92:425, 2010. 190. Taketani S, Kakimoto K, Ueta H, et al: Involvement of ABC7 in
168. Prasad AS, Tranchida L, Konno ET, et al: Hereditary sideroblastic the biosynthesis of heme in erythroid cells: interaction of ABC7 with
anemia and glucose-6-phosphate dehydrogenase deficiency in a Negro ferrochelatase. Blood 101:3274, 2003.
family. J Clin Invest 47:1415, 1968. 191. Labay V, Raz T, Baron D, et al: Mutations in SLC19A2 cause thiamine-
169. Raskind WH, Wijsman E, Pagon RA, et al: X-linked sideroblastic responsive megaloblastic anaemia associated with diabetes mellitus and
anemia and ataxia: linkage to phosphoglycerate kinase at Xq13. Am J deafness. Nat Genet 22:300, 1999.
Hum Genet 48:335, 1991. 192. Bykhovskaya Y, Casas K, Mengesha E, et al: Missense mutation in
170. Aivado M, Gattermann N, Rong A, et al: X-linked sideroblastic anemia pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and
associated with a novel ALAS2 mutation and unfortunate skewed sideroblastic anemia (MLASA). Am J Hum Genet 74:1303, 2004.
X-chromosome inactivation patterns. Blood Cells Mol Dis 37:40, 2006. 193. Patton JR, Bykhovskaya Y, Mengesha E, et al: Mitochondrial myopathy
171. Cotter PD, May A, Fitzsimons EJ, et al: Late-onset X-linked sideroblas- and sideroblastic anemia (MLASA): missense mutation in the pseu-
tic anemia. Missense mutations in the erythroid delta-aminolevulinate douridine synthase 1 (PUS1) gene is associated with the loss of tRNA
synthase (ALAS2) gene in two pyridoxine-responsive patients initially pseudouridylation. J Biol Chem 280:19823, 2005.

