Page 1442 - Williams Hematology ( PDFDrive )
P. 1442

1416  Part X:  Malignant Myeloid Diseases                        Chapter 88:  Acute Myelogenous Leukemia             1417




                    104.  Patel JP, Gonen M, Figueroa MF, et al: Prognostic relevance of integrated genetic pro-    133.  Levis M: FLT3/ITD AML and the law of unintended consequences. Blood 117:6987,
                     filing in acute myeloid leukemia. N Engl J Med 266:1079, 2012.  2011.
                    105.  Grossmann V, Schnittger S, Kohlmann A, et al: A novel hierarchical prognostic model     134.  Yoshimoto G, Miyamoto T, Jabbarzadeh-Tabrizi S, et al: FLT3-ITD up-regulates
                     of AML solely based on molecular mutations. Blood 120:2963, 2012.  MCL-1 to promote survival of stem cell sin acute myeloid leukemia via FLT3-IT-
                    106.  Abdel-Wahab O, Levine RL: Mutations in epigenetic modifiers in the pathogenesis   D-specific STAT5 activation. Blood 114:5034, 2009.
                     and therapy of acute myeloid leukemia. Blood 121:3563, 2013.    135.  Brunet S, Labopin M, Esteve J, et al: Impact of FLT3 internal tandem duplication on
                    107.  Grimwade D, Hills RK, Moorman AV, et al: Refinement of cytogenetic classification   the outcome of related and unrelated hematopoietic transplantation for adult myeloid
                     in acute myeloid leukemia: Determination of prognostic significance or rare recurring   leukemia in the first remission: A retrospective analysis. J Clin Oncol 30:735, 2012.
                     chromosomal abnormalities amongst 5,875 younger adult patients treated in the UK     136.  Yamamoto Y, Kiyoi H, Nakano Y, et al: Activating mutation of D835 within the activa-
                     Medical Research Council trials. Blood 116: 354, 2010.  tion loop of FLT3 in human hematologic malignancies. Blood 97:2434, 2001.
                    108.  Mauritzson N, Albin M, Rylander L, et al: Pooled analysis of clinical and cytogenetic     137.  Mizuno S, Chijiwa T, Okamura T, et al: Expression of DNA methyltransferases
                     features in treatment-related and de novo adult acute myeloid leukemia and myelo-  DNMT1, D1, and 3B in normal hematopoiesis and in acute and chronic myelogenous
                     dysplastic syndromes based on consecutive series of 761 patients analyzed 1976–1993   leukemia. Blood 97:1172, 2001.
                     and on 5098 unselected cases reported in the literature 1974–2001. Leukemia 16:2366,     138.  Im AP, Sehgal AR, Carroll MP et al: DNMT3A and IDH mutations in acute myeloid
                     2002.                                                  leukemia and other myeloid malignancies: Associations with prognosis and potential
                    109.  Grimwade D, Enver T: Acute promyelocytic leukemia: Where does it stem from? Leu-  treatment strategies. Leukemia 28:1774, 2014.
                     kemia 18:375, 2004.                                  139.  Thol P, Damm F, Ludeking A, et al: Incidence and prognostic influence of DNMT3A
                    110.  Zeisig BB, Kwok C, Zelent A, et al: Recruitment of RXR by homotetrameric RARalpha   mutations in acute myeloid leukemia. J Clin Oncol 29:2889, 2011.
                     fusion proteins is essential for Transformation. Cancer Cell 12:36, 2007.    140.  Ley TJ, Ding L, Walther MJ, et al: DNMT3A mutations in acute myeloid leukemia N
                    111.  Cox MC, Panetta P, Venditti  A, et al:  Comparison between conventional banding     Engl J Med 363:2424, 2010.
                     analysis  and FISH  screening  with  an AML-specific  set of  probes  in 260  patients.     141.  Marcucci G, Metzeler KH, Schwind S, et al: Age-related prognostic impact of different
                     Hematol J 24:263, 2003.                                types of DNMT3A mutations in adults with primary cytogenetically normal acute
                    112.  Paschka P, Marcucci G, l Ruppert AS, et al: Adverse prognostic significance of KIT   myeloid leukemia. J Clin Oncol 80:742, 2012.
                     mutations in adult acute myeloid leukemia with inv(16 and t(8;21): A Cancer and     142.  Shivarov V, Gueroguieva R, Stoimenov A, et al: DNMT3A mutation is a poor prog-
                     Leukemia Group B Study. J Clin Oncol 24:3904, 2006.    nosis biomarker in AML: Results of a meta-analysis of 4500 AML patients. Leuk Res
                    113.  Schwind S, Edward CG, Nicolet D, et al: Inv (16)/t(16;16) acute myeloid leukemia   37:1445, 2013.
                     with non-type A (CBFB-MYH11) fusions associate with distinct clinical and genetic     143.  Gaidzik VI, Schlenk RF, Paschka P, et al: Clinical impact of DNMT3A mutations in
                     features and lack KIT mutations. Blood 212:385, 2013.  younger adult patients with acute myeloid leukemia: Results of the AML study group
                    114.  Paschka P, Du J, Schlenk FR, et al: Secondary genetic lesions in acute myeloid leu-  (AMLSG). Blood 121:4769, 2013.
                     kemia with Inv(16) or t(16;16): A study of the German-Austrian AML study group     144.  Kihara R, Nagata Y, Kiyoi H, et al: Comprehensive analysis of genetic alterations and
                     (AMLSG), Blood 121:170, 2013.                          their prognosis impacts in adult acute myeloid leukemia patients. Leukemia 28:1586,
                    115.  Li Y, Gao L, Luo X, et al: Epigenetic silencing of microRNA-193a contributes to leu-  2014.
                     kemogenesis in t(8;21) acute myeloid leukemia by activating the PTEN/PI3K signal     145.  Ito Y: Oncogenic potential of the RUNX gene family: “Overview.” Oncogene 23:4198,
                     pathway. Blood 121:499, 2013.                          2004.
                    116.  Nakagawa M, Shimabe M, Watanabe-Okochi N, et al: AML1/RUNX1 functions as a     146.  Schnittger S, Dicker F, Kern W, et al: RUNX1 mutations are frequent in de novo AML
                     cytoplasmic attenuator of NF-κB signaling in the repression of myeloid tumors. Blood   with noncomplex karyotype and confer an unfavorable prognosis. Blood 117:2348,
                     118:6626, 2011.                                        2011.
                    117.  Lughart S, Groschel S, Beverloo HB, et al: Clinical, molecular, and prognostic signif-    147.  Gaidzik VI, Bullinger L, Schlenk RF, et al: RUNX1 mutations in acute myeloid leuke-
                     icance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnor-  mia: Results from a comprehensive genetic and clinical analysis from the AML study
                     malities in acute myeloid leukemia. J Clin Oncol 28:3890, 2010.  group. J Clin Oncol 29:1364, 2011.
                    118.  Weisser M, Haferlach C, Haferlach T, et al: Advanced age and high initial WBC influ-    148.  Mendler JH, Maharry K, Radmacher MD, et al: RUNX1 mutations are associated
                     ence the outcome of inv(3)(q21q26)/t(3;3)(q21;q26) positive AML. Leuk Lymphoma   with poor outcome in younger and older patients with cytogenetically normal acute
                     48:2145, 2007.                                         myeloid leukemia and with distinct gene and microRNA expression signatures. J Clin
                    119.  Kayser S, Zucknick M, Dohner K, et al: Monosomal karyotype in adult acute myeloid   Oncol 30:3109, 2012.
                     leukemia: Prognostic impact and outcome after different treatment strategies. Blood     149.  Skokowa J, Stenemann D, Katsman-Kuipers JE, et al: Cooperativity of RUNX1 and
                     119:551, 2012.                                         CSF3R mutations in severe congenital neutropenia: A unique pathway in myeloid
                    120.  Rucker FG, Schlenk RF, Bulolinger L, et al: TP53 alterations in acute myeloid leukemia   leukemogenesis. Blood 123:2229, 2014.
                     with complex karyotype correlate with specific copy number alterations, monosomal     150.  Solary E, Bernard OA, Terfferi A, et al: The Ten-Eleven Translocation (TET2) gene in
                     karyotype, and dismal outcome. Blood 119:214, 2012.    hematopoiesis and hematopoietic diseases. Leukemia 38:485, 2014.
                    121.  Welch JS, Ley TJ, Link DC, et al: The origin and evolution of mutations in acute mye-    151.  Tian X, Yu Y, Yin J, et al: TET2 gene mutation is unfavorable prognostic factor in
                     loid leukemia. Cell 150:264, 2012.                     cytogenetically normal acute myeloid leukemia patient with NPM1+ and FLT3-ITD-
                    122.  Mardi ER, Ding L, Dooling DJ, et al: Recurring mutations found by sequencing an   mutations. Int J Hematol 100:96, 2014.
                     acute myeloid leukemia genome. N Engl J Med 361:1058, 2009.    152.  Aslanyan MG, Kroeze LI, Langemeijer SM, et al: Clinical and biological impact of
                    123.  The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes   TET2 mutations and expression in younger adult AML patients treated within the
                     of adult de novo acute myeloid leukemia. N Engl J Med 268:2059, 2013.  EORTC/GIMEMA AML-12 clinical trial. Ann Hematol 92:1401, 2014.
                    124.  Port M, Bottcher M, Thol F, et al: Prognostic significance of FLT3 internal tandem     153.  Metzeler KH, Maharry K, Radmacher MD, et al: TET2 mutations improve the new
                     duplication, nucleophosmin1, and CEBPA gene mutations for acute myeloid leukemia   European LeukemiaNet risk classification of acute myeloid leukemia: A Cancer and
                     patients with normal karyotype and younger than 60 years: A systematic review and   Leukemia Group B study. J Clin Oncol 29:1373, 2011.
                     meta-analysis. Ann Hematol 93:1279, 2014.            154.  Green CL, Koo KK, Hills FR, et al: Prognostic significance of CEBPA mutations in a
                    125.  Hirsch P, Qassa G, Marzac C, et al: Acute myeloid leukemia in patients older than 75:   large cohort of younger adult patients with acute myeloid leukemia: Impact of double
                     Prognostic impact of FLT3-ITD and NPM1 mutations. Leuk Lymphoma 16:1, 2014.  CEBPA mutations and the interaction with FLT3 and NPM1 mutations. J Clin Oncol
                    126.  Falni B, Mecucci C, Tiacci E, et al: GIMEMA acute leukemia working party. Cytoplas-  28:2739, 2010.
                     mic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl     155.  Taskesen E, Bullinger L, Corbacioglu A, et al: Prognostic impact, concurrent genetic
                     J Med 352:254, 2005.                                   mutations, and gene expression features of AML with CEBPA mutations in a cohort
                    127.  Schlenk RE, Dohner K, Krauter J, et al: Mutations and treatment outcome in cytoge-  of 1183 cytogenetically normal AML patients: Further evidence of CEBPA double
                     netically normal acute myeloid leukemia. N Engl J Med 358, 1909, 2008.  mutant AML as a distinctive disease entity. Blood 1107:2469, 2011.
                    128.  Becker H, Marcucci G, Maharry K, et al: Favorable prognostic impact of NPM1 muta-    156.  Fasan A, Haferlach C, Alpermann T, et al: The role of different genetic subtypes of
                     tions in older pateints with cytogenetically normal de novo acute myeloid leukemia   CEBPA mutated AML. Leukemia 28:791, 2013.
                     and associated gene-and microRNA-expression signatures: A Cancer and Leukemia     157.  Grossman V, Haferlach C, Nadarajah N, et al: CEBPA double-mutated acute myeloid
                     Group B Study. J Clin Oncol 28:596, 2009.              leukaemia harbours concomitant molecular mutations in 76.8% of cases with TET2
                    129.  Greiner J, Ono Y, Hofmann S, et al: Mutated regions of nucleophosmin 1 elicit both   and GATGA2 alterations impacting prognosis. Br J Haematol 161:642, 2013.
                     CD4+ and CD8+ T cell responses in patients with acute myeloid leukemia. Blood 120:     158.  Paschka P, Schlenk RF, Gaidzik VI, et al: IDH1 and IDH2 mutations are frequent
                     1282, 2012.                                            genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytoge-
                    130.  Renneville A, Roumier C, Biggio V, et al: Cooperating gene mutations in acute mye-  netically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal
                     loid leukemia: A review of the literature. Leukemia 22:915, 2008.  tandem duplication. J Clin Oncol 28:3636, 2010.
                    131.  Small D: Targeting FLT3 for the treatment of leukemia. Semin Hematol 45(3 Suppl 2):     159.  Guan L, Gao L, Wang L, et al: The frequency and clinical significance of IDH1 mua-
                     S17, 2008.                                             tions in Chinese acute myeloid leukemia patients. PLoS One 8:e83334, 2013.
                    132.  Janke  H, Pastore F,  Schumacher  D,  et  al: Activating  FLT3  mutants  show distinct     160.  Boissel N, Nibourel O, Renneville A, et al: Prognostic impact of isocitrate dehydroge-
                     gain-of-function phenotypes in vitro and a characteristic signaling pathway profile   nase enzyme isoforms 1 and 2 mutations in acute myeloid leukemia: A study by the
                     associated with prognosis in acute myeloid leukemia. PLoS One 9:e89560, 2014.  acute leukemia French association group. J Clin Oncol 28:3717, 2010.







          Kaushansky_chapter 88_p1373-1436.indd   1417                                                                  9/21/15   11:02 AM
   1437   1438   1439   1440   1441   1442   1443   1444   1445   1446   1447