Page 1743 - Williams Hematology ( PDFDrive )
P. 1743

1718           Part XI:  Malignant Lymphoid Diseases                                                                                                       Chapter 105:  Plasma Cell Neoplasms: General Considerations           1719




                 59.  Ogmundsdottir HM, Johannesson GM, Sceinsdottir S, et al: Familial macroglobuline-    92.  Zhou W, Yang Y, Xia J, et al: NEK2 induces drug resistance mainly through activation of
                  mia: Hyperactive B-cells but normal natural killer function. Scand J Immunol 40:195,   efflux drug pumps and is associated with poor prognosis in myeloma and other cancers.
                  1994.                                                  Cancer Cell 23:48, 2013.
                 60.  Treon SP, Hunter ZR, Aggarwal A, et al: Characterization of familial Waldenstrom’s     93.  Pei XY, Dai Y, Felthousen J, et al: Circumvention of Mcl-1-dependent drug resistance
                  macroglobulinemia. Ann Oncol 17:488, 2006.             by simultaneous Chk1 and MEK1/2 inhibition in human multiple myeloma cells. PLoS
                 61.  Kristinsson SY, Goldin LR, McMaster ML, et al: Risk of lymphoproliferative disorders   One 9:e89064, 2014.
                  among first-degree relatives of lymphoplasmacytic lymphoma/Waldenstrom macro-    94.  Chapman MA, Lawrence MS, Keats JJ, et al: Initial genome sequencing and analysis of
                  globulinemia patients: A population-based study in Sweden. Blood 112:3052, 2008.  multiple myeloma. Nature 471:467, 2011.
                 62.  McMaster ML: Familial Waldenstrom’s macroglobulinemia. Semin Oncol 30:146, 2003.    95.  Martinez-Lopez J, Lahuerta JJ, Pepin F, et al: Prognostic value of deep sequencing method
                 63.  Treon SP, Tripsas C, Hanzis C, et al: Familial disease predisposition impacts treatment   for minimal residual disease detection in multiple myeloma. Blood 123:3073, 2014.
                  outcome in patients with Waldenström macroglobulinemia. Clin Lymphoma Myeloma     96.  Walker BA, Leone PE, Jenner MW, et al: Integration of global SNP-based mapping and
                  Leuk 12:433, 2012.                                     expression arrays reveals key regions, mechanisms, and genes important in the patho-
                 64.  Royer RH, Koshoil J, Vasquez LG, et al: Differential characteristics of Waldenström   genesis of multiple myeloma. Blood 108:1733, 2006.
                  macroglobulinemia according to patterns of familial aggregation. Blood 115:4464, 2010.    97.  Avet-Loiseau H, Attal M, Moreau P, et al: Genetic abnormalities and survival in multiple
                 65.  Zhan F, Tian E, Bumm K, et al: Gene expression profiling of human plasma cell differ-  myeloma: The experience of the Intergroupe Francophone du Myelome. Blood 109:3489,
                  entiation and classification of multiple myeloma based on similarities to distinct stages   2007.
                  of late-stage B-cell development. Blood 101:1128, 2003.    98.  Van Wier S, Braggio E, Baker A, et al: Hypodiploid multiple myeloma is characterized
                 66.  Silacci P, Mottet A, Steimle V, et al: Developmental extinction of major histocompati-  by more aggressive molecular markers than non-hyperdiploid multiple myeloma. Hae-
                  bility complex class II gene expression in plasmocytes is mediated by silencing of the   matologica 98:1586, 2013.
                  transactivator gene CIITA. J Exp Med 180:1329, 1994.    99.  Greipp PR, San Miguel J, Durie BG, et al: International staging system for multiple
                 67.  Calame KL: Plasma cells: Finding new light at the end of B cell development. Nat Immunol   myeloma. J Clin Oncol 23:3412, 2005.
                  2:1103, 2001.                                         100. Mikhael JR, Dingli D, Roy V, et al: Management of newly diagnosed symptomatic mul-
                 68.  Hargreaves DC, Hyman PL, Lu TT, et al: A coordinated change in chemokine respon-  tiple myeloma: Updated Mayo Stratification of Myeloma and Risk-Adapted Therapy
                  siveness guides plasma cell movements. J Exp Med 194:45, 2001.  (mSMART) consensus guidelines 2013. Mayo Clin Proc 88:360, 13.
                 69.  Barberis A, Widenhorn K, Vitelli L, Busslinger M: A novel B-cell lineage-specific tran-    101. Liu J, Gu Z, Yang Y, et al: A subset of CD20 MM patients without the t(11;14) are asso-
                  scription factor present at early but not late stages of differentiation. Genes Dev 4:849,   ciated with poor prognosis and a link to aberrant expression of Wnt signaling. Hematol
                  1990.                                                  Oncol 32:215, 2014.
                 70.  Nutt SL, Eberhard D, Horcher M, et al: Pax5 determines the identity of B cells from the     102. Ouyang J, Gou X, Ma Y, et al: Prognostic value of 1p deletion for multiple myeloma: A
                  beginning to the end of B-lymphopoiesis. Int Rev Immunol 20:65, 2001.  meta-analysis. Int J Lab Hematol 36:555, 2014.
                 71.  Reimold AM, Iwakoshi NN, Manis J, et al: Plasma cell differentiation requires the tran-    103. Zhan F, Colla S, Wu X, et al: CKS1B, overexpressed in aggressive disease, regulates
                  scription factor XBP-1. Nature 412:300, 2001.          multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and -
                 72.  Bergsagel PL, Kuehl WM: Molecular pathogenesis and a consequent classification of   independent mechanisms. Blood 109:4995, 2007.
                  multiple myeloma. J Clin Oncol 23:6333, 2005.         104. Bryce AH, Ketterling RP, Gertz MA, et al: Translocation t(11;14) and survival of
                 73.  Greenman C, Stephens P, Smith R, et al: Patterns of somatic mutation in human cancer   patients with light chain (AL) amyloidosis. Haematologica 94:380, 2009.
                  genomes. Nature 446:153, 2007.                        105. Fonseca R, Ahmann GJ, Jalal SM, et al: Chromosomal abnormalities in systemic amy-
                 74.  Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, et al: Cyclin D dysregulation: An early and   loidosis. Br J Haematol 103:704, 2002.
                  unifying pathogenic event in multiple myeloma. Blood 106:296, 2005.    106. Bochtler T, Hegenbart U, Kunz C, et al: Gain of chromosome 1q21 is an independent
                 75.  Kotani A, Kakazu N, Tsuruyama T, et al: Activation-induced cytidine deaminase (AID)   adverse prognostic factor in light chain amyloidosis patients treated with melphalan/
                  promotes B cell lymphomagenesis in Emu-cMyc transgenic mice. Proc Natl Acad Sci U   dexamethasone. Amyloid 21:9, 2014.
                  S A 104:1616, 2007.                                   107. Poulain S, Roumier C, Decambron A, et al: MYD88 L265P mutation in Waldenstrom
                 76.  Landgren O, Kyle RA, Pfeiffer RM, et al: Monoclonal gammopathy of undetermined   macroglobulinemia. Blood 121:4504, 2013.
                  significance (MGUS) consistently precedes multiple myeloma: A prospective study.     108. Treon SP, Hunter ZR: A new era for Waldenstrom macroglobulinemia: MYD88 L265P.
                  Blood 113:5412, 2009.                                  Blood 121:4434, 2013.
                 77.  Kalff  MW, Hijmans  W: Immunoglobulin analysis in  families  of  macroglobulinemia     109. Anderson KC, Carrasco RD: Pathogenesis of myeloma. Annu Rev Pathol 6:249, 2011.
                  patients. Clin Exp Immunol 5:361, 1969.               110. Hurt EM, Wiestner A, Rosenwald A, et al: Overexpression of c-maf is a frequent onco-
                 78.  Landgren O, Kristinsson SY, Goldin LR, et al: Risk of plasma cell and lymphoprolifer-  genic event in multiple myeloma that promotes proliferation and pathological interac-
                  ative disorders among 14621 first-degree relatives of 4458 patients with monoclonal   tions with bone marrow stroma. Cancer Cell 5:191, 2004.
                  gammopathy of undetermined significance in Sweden. Blood 114:791, 2009.    111. Hideshima T, Mitsiades C, Tonon G, et al: Understanding multiple myeloma pathogen-
                 79.  Annunziata CM, Davis RE, Demchenko Y, et al: Frequent engagement of the classical   esis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 7:585, 2007.
                  and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple mye-    112. Galson DL, Silbermann R, Roodman GD: Mechanisms of multiple  myeloma bone
                  loma. Cancer Cell 12:115, 2007.                        disease. Bonekey Rep 1:135, 2012.
                 80.  Keats JJ, Fonseca R, Chesi M, et al: Promiscuous mutations activate the noncanonical     113. Damiano JS, Cress AE, Hazlehurst LA, et al: Cell adhesion mediated drug resistance
                  NF-kappaB pathway in multiple myeloma. Cancer Cell 12:131, 2007.  (CAM-DR): Role of integrins and resistance to apoptosis in human myeloma cell lines.
                 81.  Bezieau S, Devilder MC, Avet-Loiseau H, et al: High incidence of N and K-Ras acti-  Blood 93:1658, 1999.
                  vating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis.     114. Tian E, Zhan F, Walker R, et al: The role of the Wnt-signaling antagonist DKK1 in the
                  Hum Mutat 18:212, 2001.                                development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483, 2003.
                 82.  Liu P, Leong T, Quam L, et al: Activating mutations of N- and K-ras in multiple mye-    115. Yaccoby S, Wezeman MJ, Zangari M, et al: Inhibitory effects of osteoblasts and
                  loma show different clinical associations: Analysis of the Eastern Cooperative Oncol-  increased bone formation on myeloma in novel culture systems and a myelomatous
                  ogy Group Phase III Trial. Blood 88:2699, 1996.        mouse model. Haematologica 91:192, 2006.
                 83.  Rasmussen T, Kuehl M, Lodahl M, et al: Possible roles for activating RAS mutations in     116.  Webb SL, Edwards CM: Novel therapeutic targets in myeloma bone disease. Br J Pharmacol
                  the MGUS to MM transition and in the intramedullary to extramedullary transition in   171:3765, 2014.
                  some plasma cell tumors. Blood 105:317, 2005.         117. Li X, Pennisi A, Yaccoby S: Role of decorin in the antimyeloma effects of osteoblasts.
                 84.  Levine AJ: P53, the cellular gatekeeper for growth and division. Cell 88:323, 1997.  Blood 112:159, 2008.
                 85.  Matlashewski G, Lamb P, Pim D, et al: Isolation and characterization of a human p53     118. Seidel C, Hjertner O, Abildgaard N, et al: Serum osteoprotegerin levels are reduced in
                  cDNA clone: Expression of the human p53 gene. EMBO J 3:3257, 1984.  patients with multiple myeloma with lytic bone disease. Blood 98:2269, 2001.
                 86.  Chng WJ, Price-Troska T, Gonzalez-Paz N, et al: Clinical significance of TP53 mutation     119. Croucher PI, Shipman CM, Lippitt J, et al: Osteoprotegerin inhibits the development of
                  in myeloma. Leukemia 21:582, 2007.                     osteolytic bone disease in multiple myeloma. Blood 98:3534, 2001.
                 87.  Neri A, Baldini L, Trecca D, et al: P53 gene mutations in multiple myeloma are associ-    120. Pearse RN, Sordillo EM, Yaccoby S, et al: Multiple myeloma disrupts the TRANCE/
                  ated with advanced forms of malignancy. Blood 81:128, 1993.  osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progres-
                 88.  Fonseca R, Harrington D, Oken MM, et al: Biological and prognostic significance of   sion. Proc Natl Acad Sci U S A 98:11581, 2001.
                  interphase fluorescence in situ hybridization detection of chromosome 13 abnormali-    121. Terpos E, Mihou D, Szydlo R, et al: The combination of intermediate doses of thalido-
                  ties (delta13) in multiple myeloma: An eastern cooperative oncology group study. Cancer   mide with dexamethasone is an effective treatment for patients with refractory/relapsed
                  Res 62:715, 2002.                                      multiple myeloma and normalizes abnormal bone remodeling, through the reduction
                 89.  Klein B, Seckinger A, Moehler T, Hose D: Molecular pathogenesis of multiple mye-  of sRANKL/osteoprotegerin ratio. Leukemia 19:1969, 2005.
                  loma: Chromosomal aberrations, changes in gene expression, cytokine networks, and     122. Terpos E, Politou M, Szydlo R, et al: Autologous stem cell transplantation normalizes
                  the bone marrow microenvironment. Recent Results Cancer Res 183:39, 2011.  abnormal bone remodeling and sRANKL/osteoprotegerin ratio in patients with multi-
                 90.  Shaughnessy JD Jr, Zhan F, Burington BE, et al: A validated gene expression model of   ple myeloma. Leukemia 18:1420, 2004.
                  high-risk multiple myeloma is defined by deregulated expression of genes mapping to     123. Gunn WG, Conley A, Deininger L, et al: A crosstalk between myeloma cells and mar-
                  chromosome 1. Blood 109:2276, 2007.                    row stromal cells stimulates production of DKK1 and interleukin-6: A potential role
                 91.  Gearhart J, Pashos EE, Prasad MK: Pluripotency redux—Advances in stem-cell research.    in the development of lytic bone disease and tumor progression in multiple myeloma.
                  N Engl J Med 157:1469, 2007.                           Stem Cells 24:986, 2006.





          Kaushansky_chapter 105_p1707-1720.indd   1718                                                                 9/18/15   9:45 AM
   1738   1739   1740   1741   1742   1743   1744   1745   1746   1747   1748