Page 1744 - Williams Hematology ( PDFDrive )
P. 1744

1718  Part XI:  Malignant Lymphoid Diseases   Chapter 105:  Plasma Cell Neoplasms: General Considerations            1719




                    124. Vallet S, Mukherjee S, Vaghela N, et al: Activin A promotes multiple myeloma-induced     143. Rajkumar SV, Kyle RA, Therneau TM, et al: Serum free light chain ratio is an indepen-
                     osteolysis and is a promising target for myeloma bone disease. Proc Natl Acad Sci U S A   dent risk factor for progression in monoclonal gammopathy of undetermined signifi-
                     107:5124, 2010.                                       cance. Blood 106:812, 2005.
                    125. Terpos E, Kastritis E, Christoulas D, et al: Circulating activin-A is elevated in patients     144. Kumar S, Dispenzieri A, Lac MQ, et al: Revised prognostic staging system for light
                     with advanced multiple myeloma and correlates with extensive bone involvement and   chain amyloidosis incorporating cardiac biomarkers and serum free light chain mea-
                     inferior survival; no alterations post-lenalidomide and dexamethasone therapy. Ann   surements. J Clin Oncol 30:989, 2012.
                     Oncol 23:2681, 2012.                                145.  Leleu Z, Moreau AS, Weller E, et al: Serum immunoglobulin free light chain correlates with
                    126. Chantry AD, Heath D, Mulivor AW, et al: Inhibiting activin-A signaling stimulates   tumor burden markers in Waldenstrom macroglobulinemia. Leuk Lymphoma 49:1104, 2008.
                     bone formation and prevents cancer-induced bone destruction in vivo. J Bone Miner     146. Katzmann JA, Dispenzieri A, Kyle RA, et al: Elimination of the need for urine studies
                     Res 25:2633, 2010.                                    in the screening algorithm for monoclonal gammopathies by using serum immunofix-
                    127. Tai YT, Chang BY, Kong SY, et al: Bruton tyrosine kinase inhibition is a novel ther-  ation and free light chain assays. Mayo Clin Proc 81:1575, 2006.
                     apeutic strategy targeting tumor in the bone marrow microenvironment in multiple     147. Rawstron AC, Orfao A, Beksac M, et al: Report of the European myeloma network on
                     myeloma. Blood 120:1877, 2012.                        multiparametric flow cytometry in multiple myeloma and related disorders. Haemato-
                    128. Rushworth SA, Bowles KM, Barrera LN, et al: BTK inhibitor ibrutinib is cytotoxic   logica 93:431, 2008.
                     to myeloma and potently enhances bortezomib and lenalidomide activities through     148. Zhan F, Sawyer J, Tricot G: The role of cytogenetics in myeloma. Leukemia 20:1484, 2006.
                     NF-kappaB. Cell Signal 25:106, 2013.                 149. Shortt CP, Gleeson TG, Breen KA, et al: Whole-body MRI versus PET in assessment of
                    129. Potter M, Wax JS, Hansen CT, Kenny JJ: BALB/c.CBA/N mice carrying the defective   multiple myeloma disease activity. AJR Am J Roentgenol 192:980, 2009.
                     Btk(xid) gene are resistant to pristane-induced plasmacytomagenesis.  Int Immunol     150. Walker R, Barlogie B, Haessler J, et al: Magnetic resonance imaging in multiple mye-
                     11:1059, 1999.                                        loma: Diagnostic and clinical implications. J Clin Oncol 25:1121, 2007.
                    130. Barlougie B, Attal M, Crowley J, et al: Long term follow up of autotransplantation trials     151. Bartel  TB,  Haessler  J,  Brown  TLY,  et  al:  F18-fluorodeoxyglucose  positron  emission
                     for multiple myeloma: Update of protocols conducted by the intergroupe francophone   tomography in the context of other imaging techniques and prognostic factors in mul-
                     du myeloma, southwest oncology group, and university of Arkansas for medical sci-  tiple myeloma. Blood 114:2068, 2009.
                     ences. J Clin Oncol 28:1209, 2010.                   152. Zamagni E, Patriarca F, Nanni C, et al: Prognostic relevance of 18-FDG PET/CT in
                    131. Zhan F, Hardin J, Kordsmeier B, et al: Global gene expression profiling of multiple   newly diagnosed multiple myeloma patients treated with upfront autologous transplan-
                     myeloma, monoclonal gammopathy of undetermined significance, and normal bone   tation. Blood 118:5989, 2011.
                     marrow plasma cells. Blood 99:1745, 2002.            153. Durie GM, Stock-Novak D, Salmon S, et al: Prognostic value of treatment serum B2
                    132. Jakubikova J, Adamia S, Kost-Alimova M, et al: Lenalidomide targets clonogenic side   microglobulin in mycelia: A Southwest Oncology group study. Blood 4:823, 1990.
                     population in multiple myeloma: Pathophysiologic and clinical implications.  Blood     154. Xie J, Wang Y, Freeman ME, et al: β -microglobulin as a negative regulator of the
                                                                                                 2
                     117:4409, 2011.                                       immune system: High concentrations of the protein inhibit in vitro generation of func-
                    133. Nara M, Teshima K, Watanabe A, et al: Bortezomib reduces the tumorigenicity of mul-  tional dendritic cells. Blood 101:4005, 2003.
                     tiple myeloma via down regulation of up regulated targets in clonogenic side popula-    155. Waheed S, Shaughnessy JD, van Rhee F, et al: International staging system and meta-
                     tion cells. PLoS One 8:e56954, 2013.                  phase cytogenetic abnormalities in the era of gene expression profiling data in multiple
                    134. Matsui W, Wang Q, Barber JP, et al: Clonogenic multiple myeloma progenitors, stem   myeloma treated with total therapy 2 and 3 protocols. Cancer 117:1001, 2011.
                     cell properties, and drug resistance. Cancer Res 68:190, 2008.    156. Barlogie B, Smallwood L, Smith T, et al: High serum levels of lactic dehydrogenase
                    135. Matsui W, Hugg CA, Wang Q, et al: Characterization of clonogenic multiple myeloma   identify a high-grade lymphoma-like myeloma. Ann Intern Med 110:521, 1989.
                     cells. Blood 103:2332, 2004.                         157. Fassas AB, Muwalla F, Berryman T, et al: Myeloma of the central nervous system: Asso-
                    136. Pilarski LM, Belch AR: Clonotypic myeloma cells able to xenograft myeloma to non-  ciation with high risk chromosomal abnormalities, plasmablastic morphology and
                     obese diabetic sever combined immunodeficient mice copurify with CD34 (+) hemato-  extramedullary manifestations. Br J Haematol 117:103, 2002.
                     poietic progenitors. Clin Cancer Res 8:3198, 2002.    158. Fassas AB, van Rhee F, Tricot G: Predicting long term survival in multiple myeloma
                    137. Kuranda K, Berthon C, Dupont C, et al: A subpopulation of malignant CD34+C-  patients follow autotransplants. Leuk Lymphoma 44:211, 2003.
                     D138+B7-H1+ plasma cells is present in multiple myeloma patients.  Exp Hematol     159. Tricot G: What is the significance of molecule remission in multiple myeloma? Clin Adv
                     28:124, 2010.                                         Hematol Oncol 5:91, 2007.
                    138. Yaccoby S, Barlogie B, Epstein J: Primary myeloma cells growing in SCID-hu mice: A     160. Ladetto M, Pagliano G, Ferrero S, et al: 3683 Major shrinking of residual tumor cell
                     model for studying the biology and treatment of myeloma and its manifestations. Blood   burden and achievement of molecule remission in myeloma patients undergoing
                     92:2908, 1998.                                        post-transplant consolidation with bortezomib, thalidomide and dexamethasone: A
                    139. Yaccoby S, Epstein J: The proliferative potential of myeloma plasma cells manifest in the   qualitative and quantitative PCR study. ASH. 2008.
                     SCID-hu host. Blood 94:3576, 1999.                   161. Rawstron AC, Child JA, de Tute RM, et al: Minimal residual disease assessed by mul-
                    140. Wang S, Tricot G, Shi L, et al: RARalpha2 expression is associated with disease pro-  tiparameter flow cytometry in multiple myeloma: Impact on outcome in the medical
                     gression and plays a crucial role in efficacy of ATRA treatment in myeloma. Blood   research council myeloma IX study. J Clin Oncol 31:2504, 2013.
                     114:600, 2009.                                       162. Flanders A, Stetler-Stevenson, Landgren O: Minimal residual disease testing in multi-
                    141. Yang Y, Shi J, Tolomelli G, et al: RARα2 expression confers myeloma stem cell features.   ple myeloma by flow cytometry: Major heterogeneity. Blood 122:1088, 2013.
                     Blood 122:1437, 2013.                                163. Martinez-Lopez J, Fernandez-Redondo E, Garcia-Sanz, R, et al: Clinical applicability
                    142. Van Rhee F, Bolejack V, Hollmig K, et al: High serum-free light chain levels and their   and prognostic significance of molecular response assess by fluorescent-PCR of immu-
                     rapid reduction in response to therapy define an aggressive multiple myeloma subtype   noglobulin genes in multiple myeloma. Results from a GEM/PETHEMA study. Br J
                     with poor prognosis. Blood 110:827, 2007.             Haematol 163:581, 2013.

































          Kaushansky_chapter 105_p1707-1720.indd   1719                                                                 9/18/15   9:45 AM
   1739   1740   1741   1742   1743   1744   1745   1746   1747   1748   1749