Page 1790 - Williams Hematology ( PDFDrive )
P. 1790
1764 Part XI: Malignant Lymphoid Diseases Chapter 107: Myeloma 1765
198. D’Souza S, Kurihara N, Shiozawa Y, et al: Annexin II interactions with the annexin 228. Manning LS, Berger JD, O’Donoghue HL, et al: A model of multiple myeloma: Culture
II receptor enhance multiple myeloma cell adhesion and growth in the bone marrow of 5T33 murine myeloma cells and evaluation of tumorigenicity in the C57BL/KaLwRij
microenvironment. Blood 119:1888–1896, 2012. mouse. Br J Cancer 66:1088–1093, 1992.
199. Pennisi A, Ling W, Li X, et al: The ephrinB2/EphB4 axis is dysregulated in osteoprogen- 229. Vanderkerken K, Asosingh K, Croucher P, et al: Multiple myeloma biology: Lessons
itors from myeloma patients and its activation affects myeloma bone disease and tumor from the 5TMM models. Immunol Rev 194:196–206, 2003.
growth. Blood 114:1803–1812, 2009. 230. Chesi M, Robbiani DF, Sebag M, et al: AID-dependent activation of a MYC transgene
200. Oshima T, Abe M, Asano J, et al: Myeloma cells suppress bone formation by secreting a induces multiple myeloma in a conditional mouse model of post-germinal center
soluble Wnt inhibitor, sFRP-2. Blood 106:3160–3165, 2005. malignancies. Cancer Cell 13:167–180, 2008.
201. Brunetti G, Oranger A, Mori G, et al: Sclerostin is overexpressed by plasma cells from 231. Greipp PR, San Miguel J, Durie BG, et al: International staging system for multiple
multiple myeloma patients. Ann N Y Acad Sci 1237:19–23, 2011. myeloma. J Clin Oncol 23:3412–3420, 2005.
202. Colucci S, Brunetti G, Oranger A, et al: Myeloma cells suppress osteoblasts through 232. Kyle RA, Rajkumar SV: Criteria for diagnosis, staging, risk stratification and response
sclerostin secretion. Blood Cancer J 1:e27, 2011. assessment of multiple myeloma. Leukemia 23:3–9, 2009.
203. Giuliani N, Morandi F, Tagliaferri S, et al: Production of Wnt inhibitors by myeloma 233. Silvestris F, Cafforio P, Tucci M, et al: Negative regulation of erythroblast maturation by
cells: Potential effects on canonical Wnt pathway in the bone microenvironment. Can- Fas-L(+)/TRAIL(+) highly malignant plasma cells: A major pathogenetic mechanism
cer Res 67:7665–7674, 2007. of anemia in multiple myeloma. Blood 99:1305–1313, 2002.
204. Giuliani N, Rizzoli V: Myeloma cells and bone marrow osteoblast interactions: Role 234. Faquin WC, Schneider TJ, Goldberg MA: Effect of inflammatory cytokines on hypox-
in the development of osteolytic lesions in multiple myeloma. Leuk Lymphoma 48: ia-induced erythropoietin production. Blood 79:1987–1994, 1992.
2323–2329, 2007. 235. Ludwig H, Pecherstorfer M, Leitgeb C, et al: Recombinant human erythropoietin for
205. Tian E, Zhan F, Walker R, et al: The role of the Wnt-signaling antagonist DKK1 in the the treatment of chronic anemia in multiple myeloma and squamous cell carcinoma.
development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483–2494, Stem Cells 11:348–355, 1993.
2003. 236. Singh A, Eckardt KU, Zimmermann A, et al: Increased plasma viscosity as a reason for
206. Politou MC, Heath DJ, Rahemtulla A, et al: Serum concentrations of Dickkopf-1 pro- inappropriate erythropoietin formation. J Clin Invest 91:251–256, 1993.
tein are increased in patients with multiple myeloma and reduced after autologous stem 237. Ganz T, Olbina G, Girelli D, et al: Immunoassay for human serum hepcidin. Blood
cell transplantation. Int J Cancer 119:1728–1731, 2006. 112:4292–4297, 2008.
207. Fulciniti M, Tassone P, Hideshima T, et al: Anti-DKK1 mAb (BHQ880) as a potential 238. Sharma S, Nemeth E, Chen YH, et al: Involvement of hepcidin in the anemia of multiple
therapeutic agent for multiple myeloma. Blood 114:371–379, 2009. myeloma. Clin Cancer Res 14:3262–3267, 2008.
208. Heath DJ, Chantry AD, Buckle CH, et al: Inhibiting Dickkopf-1 (Dkk1) removes sup- 239. Maes K, Nemeth E, Roodman GD, et al: In anemia of multiple myeloma, hepcidin is
pression of bone formation and prevents the development of osteolytic bone disease in induced by increased bone morphogenetic protein 2. Blood 116:3635–3644, 2010.
multiple myeloma. J Bone Miner Res 24:425–436, 2009. 240. Verga Falzacappa MV, Vujic Spasic M, Kessler R, et al: STAT3 mediates hepatic hep-
209. Yaccoby S, Ling W, Zhan F, et al: Antibody-based inhibition of DKK1 suppresses cidin expression and its inflammatory stimulation. Blood 109:353–358, 2007.
tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 109:2106– 241. Wrighting DM, Andrews NC: Interleukin-6 induces hepcidin expression through
2111, 2007. STAT3. Blood 108:3204–3209, 2006.
210. Pozzi S, Fulciniti M, Yan H, et al: In vivo and in vitro effects of a novel anti-Dkk1 neu- 242. Kerr R, Stirling D, Ludlam CA: Interleukin 6 and haemostasis. Br J Haematol 115:3–12, 2001.
tralizing antibody in multiple myeloma. Bone 53:487–496, 2013. 243. Glueck HI, Hong R: A circulating anticoagulant in gamma-1A-multiple myeloma: Its
211. Ehrlich LA, Chung HY, Ghobrial I, et al: IL-3 is a potential inhibitor of osteoblast dif- modification by penicillin. J Clin Invest 44:1866–1881, 1965.
ferentiation in multiple myeloma. Blood 106:1407–1414, 2005. 244. Kelsey PR, Leyland MJ: Acquired inhibitor to human factor VIII associated with para-
212. Giuliani N, Colla S, Morandi F, et al: Myeloma cells block RUNX2/CBFA1 activity in proteinaemia and subsequent development of chronic lymphatic leukaemia. Br Med J
human bone marrow osteoblast progenitors and inhibit osteoblast formation and dif- 285:174–175, 1982.
ferentiation. Blood 106:2472–2483, 2005. 245. Wenz B, Friedman G: Acquired factor VIII inhibitor in a patient with malignant lym-
213. Vallet S, Mukherjee S, Vaghela N, et al: Activin A promotes multiple myeloma-induced phoma. Am J Med Sci 268:295–299, 1974.
osteolysis and is a promising target for myeloma bone disease. Proc Natl Acad Sci U S A 246. Lonial S, Waller EK, Richardson PG, et al: Risk factors and kinetics of thrombocy-
107:5124–5129, 2010. topenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood
214. Pozzi S, Vallet S, Mukherjee S, et al: High-dose zoledronic acid impacts bone remodel- 106:3777–3784, 2005.
ing with effects on osteoblastic lineage and bone mechanical properties. Clin Cancer Res 247. Kyle RA, Gertz MA, Witzig TE, et al: Review of 1027 patients with newly diagnosed
15:5829–5839, 2009. multiple myeloma. Mayo Clin Proc 78:21–33, 2003.
215. Vanderkerken K, De Leenheer E, Shipman C, et al: Recombinant osteoprotegerin 248. Lackner H: Hemostatic abnormalities associated with dysproteinemias. Semin Hematol
decreases tumor burden and increases survival in a murine model of multiple myeloma. 10:125–133, 1973.
Cancer Res 63:287–289, 2003. 249. Perkins HA, MacKenzie MR, Fudenberg HH: Hemostatic defects in dysproteinemias.
216. Mahindra A, Pozzi S, Raje N: Clinical trials of bisphosphonates in multiple myeloma. Blood 35:695–707, 1970.
Clin Adv Hematol Oncol 10:582–587, 2012. 250. Federici AB, Mannucci PM: Diagnosis and management of acquired von Willebrand
217. Terpos E, Berenson J, Raje N, et al: Management of bone disease in multiple myeloma. syndrome. Clin Adv Hematol Oncol 1:169–175, 2003.
Expert Rev Hematol 7:113–125, 2014. 251. Shinagawa A, Kojima H, Berndt MC, et al: Characterization of a myeloma patient with
218. Mhaskar R, Redzepovic J, Wheatley K, et al: Bisphosphonates in multiple myeloma: A a life-threatening hemorrhagic diathesis: Presence of a lambda dimer protein inhibiting
network meta-analysis. Cochrane Database Syst Rev 5:CD003188, 2012. shear-induced platelet aggregation by binding to the A1 domain of von Willebrand
219. Terpos E, Dimopoulos MA, Sezer O, et al: The use of biochemical markers of bone factor. Thromb Haemost 93:889–896, 2005.
remodeling in multiple myeloma: A report of the International Myeloma Working 252. van Genderen PJ, Vink T, Michiels JJ, et al: Acquired von Willebrand disease caused by
Group. Leukemia 24:1700–1712, 2010. an autoantibody selectively inhibiting the binding of von Willebrand factor to collagen.
220. Ferrarini M, Steimberg N, Ponzoni M, et al: Ex-vivo dynamic 3-D culture of human tis- Blood 84:3378–3384, 1994.
sues in the RCCS bioreactor allows the study of multiple myeloma biology and response 253. Glaspy JA: Hemostatic abnormalities in multiple myeloma and related disorders.
to therapy. PLoS One 8:e71613, 2013. Hematol Oncol Clin North Am 6:1301–1314, 1992.
221. Kirshner J, Thulien KJ, Martin LD, et al: A unique three-dimensional model for evalu- 254. Coleman M, Vigliano EM, Weksler ME, et al: Inhibition of fibrin monomer polymer-
ating the impact of therapy on multiple myeloma. Blood 112:2935–2945, 2008. ization by lambda myeloma globulins. Blood 39:210–223, 1972.
222. Zdzisinska B, Rolinski J, Piersiak T, et al: A comparison of cytokine production in 255. Nijziel MR, van Oerle R, Christella M, et al: Acquired resistance to activated protein C
2-dimensional and 3-dimensional cultures of bone marrow stromal cells of multiple in breast cancer patients. Br J Haematol 120:117–122, 2003.
myeloma patients in response to RPMI8226 myeloma cells. Folia Histochem Cytobiol 256. Kyle RA, Gertz MA: Primary systemic amyloidosis: Clinical and laboratory features in
47:69–74, 2009. 474 cases. Semin Hematol 32:45–59, 1995.
223. Mitsiades CS, Anderson KC, Carrasco DR: Mouse models of human myeloma. Hematol 257. Mumford AD, O’Donnell J, Gillmore JD, et al: Bleeding symptoms and coagulation
Oncol Clin North Am 21:1051–1069, viii, 2007. abnormalities in 337 patients with AL-amyloidosis. Br J Haematol 110:454–460, 2000.
224. Yaccoby S, Barlogie B, Epstein J: Primary myeloma cells growing in SCID-hu mice: A 258. Yood RA, Skinner M, Rubinow A, et al: Bleeding manifestations in 100 patients with
model for studying the biology and treatment of myeloma and its manifestations. Blood amyloidosis. JAMA 249:1322–1324, 1983.
92:2908–2913, 1998. 259. Choufani EB, Sanchorawala V, Ernst T, et al: Acquired factor X deficiency in patients
225. Pennisi A, Li X, Ling W, et al: The proteasome inhibitor, bortezomib suppresses primary with amyloid light-chain amyloidosis: Incidence, bleeding manifestations, and response
myeloma and stimulates bone formation in myelomatous and nonmyelomatous bones to high-dose chemotherapy. Blood 97:1885–1887, 2001.
in vivo. Am J Hematol 84:6–14, 2009. 260. Furie B, Greene E, Furie BC: Syndrome of acquired factor X deficiency and systemic amy-
226. Calimeri T, Battista E, Conforti F, et al: A unique three-dimensional SCID-polymeric loidosis in vivo studies of the metabolic fate of factor X. N Engl J Med 297:81–85, 1977.
scaffold (SCID-synth-hu) model for in vivo expansion of human primary multiple mye- 261. Baron JA, Gridley G, Weiderpass E, et al: Venous thromboembolism and cancer. Lancet
loma cells. Leukemia 25:707–711, 2011. 351:1077–1080, 1998.
227. Groen RW, Noort WA, Raymakers RA, et al: Reconstructing the human hematopoietic 262. Srkalovic G, Cameron MG, Rybicki L, et al: Monoclonal gammopathy of undeter-
niche in immunodeficient mice: Opportunities for studying primary multiple mye- mined significance and multiple myeloma are associated with an increased incidence of
loma. Blood 120:e9–e16, 2012. venothromboembolic disease. Cancer 101:558–566, 2004.
Kaushansky_chapter 107_p1733-1772.indd 1765 9/21/15 12:35 PM

