Page 1789 - Williams Hematology ( PDFDrive )
P. 1789
1764 Part XI: Malignant Lymphoid Diseases Chapter 107: Myeloma 1765
139. Dhodapkar MV, Kelly T, Theus A, et al: Elevated levels of shed syndecan-1 correlate 169. Raje N, Roodman GD: Advances in the biology and treatment of bone disease in mul-
with tumour mass and decreased matrix metalloproteinase-9 activity in the serum of tiple myeloma. Clin Cancer Res 17:1278–1286, 2011.
patients with multiple myeloma. Br J Haematol 99:368–371, 1997. 170. Li J, Sarosi I, Yan XQ, et al: RANK is the intrinsic hematopoietic cell surface receptor
140. Alsayed Y, Ngo H, Runnels J, et al: Mechanisms of regulation of CXCR4/SDF-1 that controls osteoclastogenesis and regulation of bone mass and calcium metabolism.
(CXCL12)-dependent migration and homing in multiple myeloma. Blood 109:2708– Proc Natl Acad Sci U S A 97:1566–1571, 2000.
2717, 2007. 171. Farrugia AN, Atkins GJ, To LB, et al: Receptor activator of nuclear factor-kappaB ligand
141. Hideshima T, Chauhan D, Hayashi T, et al: The biological sequelae of stromal cell-de- expression by human myeloma cells mediates osteoclast formation in vitro and cor-
rived factor-1alpha in multiple myeloma. Mol Cancer Ther 1:539–544, 2002. relates with bone destruction in vivo. Cancer Res 63:5438–5445, 2003.
142. Trentin L, Miorin M, Facco M, et al: Multiple myeloma plasma cells show different 172. Lai FP, Cole-Sinclair M, Cheng WJ, et al: Myeloma cells can directly contribute to the
chemokine receptor profiles at sites of disease activity. Br J Haematol 138:594–602, 2007. pool of RANKL in bone bypassing the classic stromal and osteoblast pathway of osteo-
143. Hata H, Xiao H, Petrucci MT, et al: Interleukin-6 gene expression in multiple myeloma: clast stimulation. Br J Haematol 126:192–201, 2004.
A characteristic of immature tumor cells. Blood 81:3357–3364, 1993. 173. Sezer O, Heider U, Jakob C, et al: Human bone marrow myeloma cells express RANKL.
144. Kawano M, Hirano T, Matsuda T, et al: Autocrine generation and requirement of J Clin Oncol 20:353–354, 2002.
BSF-2/IL-6 for human multiple myelomas. Nature 332:83–85, 1988. 174. Giuliani N, Bataille R, Mancini C, et al: Myeloma cells induce imbalance in the oste-
145. Klein B, Zhang XG, Jourdan M, et al: Paracrine rather than autocrine regulation oprotegerin/osteoprotegerin ligand system in the human bone marrow environment.
of myeloma-cell growth and differentiation by interleukin-6. Blood 73:517–526, Blood 98:3527–3533, 2001.
1989. 175. Pearse RN, Sordillo EM, Yaccoby S, et al: Multiple myeloma disrupts the TRANCE/
146. Thomas X, Xiao HQ, Chang R, et al: Circulating B lymphocytes in multiple myeloma osteoprotegerin cytokine axis to trigger bone destruction and promote tumor progres-
patients contain an autocrine IL-6 driven pre-myeloma cell population. Curr Top sion. Proc Natl Acad Sci U S A 98:11581–11586, 2001.
Microbiol Immunol 182:201–207, 1992. 176. Shipman CM, Croucher PI: Osteoprotegerin is a soluble decoy receptor for tumor
147. Freund GG, Kulas DT, Mooney RA: Insulin and IGF-1 increase mitogenesis and glu- necrosis factor-related apoptosis-inducing ligand/Apo2 ligand and can function as a
cose metabolism in the multiple myeloma cell line, RPMI 8226. J Immunol 151:1811– paracrine survival factor for human myeloma cells. Cancer Res 63:912–916, 2003.
1820, 1993. 177. Simonet WS, Lacey DL, Dunstan CR, et al: Osteoprotegerin: A novel secreted protein
148. Vanderkerken K, Asosingh K, Braet F, et al: Insulin-like growth factor-1 acts as a che- involved in the regulation of bone density. Cell 89:309–319, 1997.
moattractant factor for 5T2 multiple myeloma cells. Blood 93:235–241, 1999. 178. Croucher PI, Shipman CM, Lippitt J, et al: Osteoprotegerin inhibits the development of
149. Mitsiades CS, Mitsiades NS, McMullan CJ, et al: Inhibition of the insulin-like growth osteolytic bone disease in multiple myeloma. Blood 98:3534–3540, 2001.
factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple mye- 179. Mori Y, Shimizu N, Dallas M, et al: Anti-alpha4 integrin antibody suppresses the devel-
loma, other hematologic malignancies, and solid tumors. Cancer Cell 5:221–230, 2004. opment of multiple myeloma and associated osteoclastic osteolysis. Blood 104:2149–
150. Podar K, Tai YT, Davies FE, et al: Vascular endothelial growth factor triggers signaling 2154, 2004.
cascades mediating multiple myeloma cell growth and migration. Blood 98:428–435, 180. Qiang YW, Chen Y, Stephens O, et al: Myeloma-derived Dickkopf-1 disrupts Wnt-reg-
2001. ulated osteoprotegerin and RANKL production by osteoblasts: A potential mechanism
151. Podar K, Tai YT, Lin BK, et al: Vascular endothelial growth factor-induced migration underlying osteolytic bone lesions in multiple myeloma. Blood 112:196–207, 2008.
of multiple myeloma cells is associated with beta 1 integrin- and phosphatidylinositol 181. Standal T, Seidel C, Hjertner O, et al: Osteoprotegerin is bound, internalized, and
3-kinase-dependent PKC alpha activation. J Biol Chem 277:7875–7881, 2002. degraded by multiple myeloma cells. Blood 100:3002–3007, 2002.
152. Hideshima T, Chauhan D, Schlossman R, et al: The role of tumor necrosis factor alpha 182. Seidel C, Hjertner O, Abildgaard N, et al: Serum osteoprotegerin levels are reduced in
in the pathophysiology of human multiple myeloma: Therapeutic applications. Onco- patients with multiple myeloma with lytic bone disease. Blood 98:2269–2271, 2001.
gene 20:4519–4527, 2001. 183. Terpos E, Szydlo R, Apperley JF, et al: Soluble receptor activator of nuclear factor kap-
153. Otsuki T, Yamada O, Yata K, et al: Expression of fibroblast growth factor and FGF-re- paB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: Proposal for a
ceptor family genes in human myeloma cells, including lines possessing t(4;14) novel prognostic index. Blood 102:1064–1069, 2003.
(q16.3;q32. 3) and FGFR3 translocation. Int J Oncol 15:1205–1212, 1999. 184. Heath DJ, Vanderkerken K, Cheng X, et al: An osteoprotegerin-like peptidomimetic
154. Moreaux J, Legouffe E, Jourdan E, et al: BAFF and APRIL protect myeloma cells inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma. Cancer
from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 103: Res 67:202–208, 2007.
3148–3157, 2004. 185. Body JJ, Greipp P, Coleman RE, et al: A phase I study of AMGN-0007, a recombi-
155. Chauhan D, Uchiyama H, Akbarali Y, et al: Multiple myeloma cell adhesion-induced nant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma
interleukin-6 expression in bone marrow stromal cells involves activation of NF-kappa related bone metastases. Cancer 97:887–892, 2003.
B. Blood 87:1104–1112, 1996. 186. Ferguson C, Body R: Towards evidence-based emergency medicine: Best BETs from the
156. Hideshima T, Nakamura N, Chauhan D, et al: Biologic sequelae of interleukin-6 Manchester Royal Infirmary. Use of aspirin in acute stroke. Emerg Med J 23:804–805,
induced PI3-K/Akt signaling in multiple myeloma. Oncogene 20:5991–6000, 2001. 2006.
157. Pene F, Claessens YE, Muller O, et al: Role of the phosphatidylinositol 3-kinase/Akt and 187. Henry DH, Costa L, Goldwasser F, et al: Randomized, double-blind study of deno-
mTOR/P70S6-kinase pathways in the proliferation and apoptosis in multiple myeloma. sumab versus zoledronic acid in the treatment of bone metastases in patients with
Oncogene 21:6587–6597, 2002. advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin
158. Gupta D, Treon SP, Shima Y, et al: Adherence of multiple myeloma cells to bone mar- Oncol 29:1125–1132, 2011.
row stromal cells upregulates vascular endothelial growth factor secretion: Therapeutic 188. Vij R, Horvath N, Spencer A, et al: An open-label, phase 2 trial of denosumab in the
applications. Leukemia 15:1950–1961, 2001. treatment of relapsed or plateau-phase multiple myeloma. Am J Hematol 84:650–656,
159. Vacca A, Ribatti D, Presta M, et al: Bone marrow neovascularization, plasma cell 2009.
angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of 189. Yee AJ, Raje NS: Denosumab, a RANK ligand inhibitor, for the management of bone
human multiple myeloma. Blood 93:3064–3073, 1999. loss in cancer patients. Clin Interv Aging 7:331–338, 2012.
160. Ria R, Todoerti K, Berardi S, et al: Gene expression profiling of bone marrow endothe- 190. Abe M, Hiura K, Wilde J, et al: Role for macrophage inflammatory protein (MIP)-1al-
lial cells in patients with multiple myeloma. Clin Cancer Res 15:5369–5378, 2009. pha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood
161. Rajkumar SV, Mesa RA, Fonseca R, et al: Bone marrow angiogenesis in 400 patients 100:2195–2202, 2002.
with monoclonal gammopathy of undetermined significance, multiple myeloma, and 191. Choi SJ, Cruz JC, Craig F, et al: Macrophage inflammatory protein 1-alpha is a potential
primary amyloidosis. Clin Cancer Res 8:2210–2216, 2002. osteoclast stimulatory factor in multiple myeloma. Blood 96:671–675, 2000.
162. Kumar S, Gertz MA, Dispenzieri A, et al: Prognostic value of bone marrow angiogen- 192. Han JH, Choi SJ, Kurihara N, et al: Macrophage inflammatory protein-1alpha is an
esis in patients with multiple myeloma undergoing high-dose therapy. Bone Marrow osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear
Transplant 34:235–239, 2004. factor kappaB ligand. Blood 97:3349–3353, 2001.
163. Biswas SK, Mantovani A: Macrophage plasticity and interaction with lymphocyte sub- 193. Hashimoto T, Abe M, Oshima T, et al: Ability of myeloma cells to secrete macrophage
sets: Cancer as a paradigm. Nat Immunol 11:889–896, 2010. inflammatory protein (MIP)-1alpha and MIP-1beta correlates with lytic bone lesions in
164. Gabrilovich DI, Nagaraj S: Myeloid-derived suppressor cells as regulators of the patients with multiple myeloma. Br J Haematol 125:38–41, 2004.
immune system. Nat Rev Immunol 9:162–174, 2009. 194. Terpos E, Politou M, Szydlo R, et al: Serum levels of macrophage inflammatory pro-
165. Gorgun GT, Whitehill G, Anderson JL, et al: Tumor-promoting immune-suppres- tein-1 alpha (MIP-1alpha) correlate with the extent of bone disease and survival in
sive myeloid-derived suppressor cells in the multiple myeloma microenvironment in patients with multiple myeloma. Br J Haematol 123:106–109, 2003.
humans. Blood 121:2975–2987, 2013. 195. Adebanjo OA, Moonga BS, Yamate T, et al: Mode of action of interleukin-6 on mature
166. Melton LJ 3rd, Kyle RA, Achenbach SJ, et al: Fracture risk with multiple myeloma: A osteoclasts. Novel interactions with extracellular Ca2+ sensing in the regulation of
population-based study. J Bone Miner Res 20:487–493, 2005. osteoclastic bone resorption. J Cell Biol 142:1347–1356, 1998.
167. Bataille R, Chappard D, Marcelli C, et al: Recruitment of new osteoblasts and osteo- 196. Cafforio P, Savonarola A, Stucci S, et al: PTHrP produced by myeloma plasma cells
clasts is the earliest critical event in the pathogenesis of human multiple myeloma. J Clin regulates their survival and pro-osteoclast activity for bone disease progression. J Bone
Invest 88:62–66, 1991. Miner Res 29:55–66, 2014.
168. Taube T, Beneton MN, McCloskey EV, et al: Abnormal bone remodelling in patients 197. Otsuki T, Yamada O, Kurebayashi J, et al: Expression and in vitro modification of para-
with myelomatosis and normal biochemical indices of bone resorption. Eur J Haematol thyroid hormone-related protein (PTHrP) and PTH/PTHrP-receptor in human mye-
49:192–198, 1992. loma cells. Leuk Lymphoma 41:397–409, 2001.
Kaushansky_chapter 107_p1733-1772.indd 1764 9/21/15 12:35 PM

