Page 1787 - Williams Hematology ( PDFDrive )
P. 1787
1762 Part XI: Malignant Lymphoid Diseases Chapter 107: Myeloma 1763
15. Chubb D, Weinhold N, Broderick P, et al: Common variation at 3q26.2, 6p21.33, 48. Pilarski LM, Jensen GS: Monoclonal circulating B cells in multiple myeloma. A contin-
17p11.2 and 22q13.1 influences multiple myeloma risk. Nat Genet 45:1221–1225, 2013. uously differentiating, possibly invasive, population as defined by expression of CD45
16. Morgan GJ, Johnson DC, Weinhold N, et al: Inherited genetic susceptibility to multiple isoforms and adhesion molecules. Hematol Oncol Clin North Am 6:297–322, 1992.
myeloma. Leukemia 28:518–524, 2014. 49. Pilarski LM, Mant MJ, Ruether BA: Pre-B cells in peripheral blood of multiple myeloma
17. Weinhold N, Johnson DC, Rawstron AC, et al: Inherited genetic susceptibility to mono- patients. Blood 66:416–422, 1985.
clonal gammopathy of unknown significance. Blood 123:2513–2517; quiz 2593, 2014. 50. Ruiz-Arguelles GJ, Katzmann JA, Greipp PR, et al: Multiple myeloma: Circulating lym-
18. Grass S, Preuss KD, Ahlgrimm M, et al: Association of a dominantly inherited hyper- phocytes that express plasma cell antigens. Blood 64:352–356, 1984.
phosphorylated paraprotein target with sporadic and familial multiple myeloma and 51. Chen BJ, Epstein J: Circulating clonal lymphocytes in myeloma constitute a minor sub-
monoclonal gammopathy of undetermined significance: A case-control study. Lancet population of B cells. Blood 87:1972–1976, 1996.
Oncol 10:950–956, 2009. 52. Paiva B, Perez-Andres M, Vidriales MB, et al: Competition between clonal plasma cells
19. Zwick C, Held G, Auth M, et al: Over one-third of African-American MGUS and mul- and normal cells for potentially overlapping bone marrow niches is associated with a
tiple myeloma patients are carriers of hyperphosphorylated paratarg-7, an autosomal progressively altered cellular distribution in MGUS vs myeloma. Leukemia 25:697–706,
dominantly inherited risk factor for MGUS/MM. Int J Cancer 135:934–938, 2014. 2011.
20. Soderberg KC, Kaprio J, Verkasalo PK, et al: Overweight, obesity and risk of haema- 53. Ghobrial IM: Myeloma as a model for the process of metastasis: Implications for ther-
tological malignancies: A cohort study of Swedish and Finnish twins. Eur J Cancer apy. Blood 120:20–30, 2012.
45:1232–1238, 2009. 54. Kumar S, Rajkumar SV, Kyle RA, et al: Prognostic value of circulating plasma cells in
21. Wallin A, Larsson SC: Body mass index and risk of multiple myeloma: A meta-analysis monoclonal gammopathy of undetermined significance. J Clin Oncol 23:5668–5674,
of prospective studies. Eur J Cancer 47:1606–1615, 2011. 2005.
22. Calle EE, Rodriguez C, Walker-Thurmond K, et al: Overweight, obesity, and mortality 55. Bianchi G, Kyle RA, Larson DR, et al: High levels of peripheral blood circulating plasma
from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625– cells as a specific risk factor for progression of smoldering multiple myeloma. Leukemia
1638, 2003. 27:680–685, 2013.
23. Friedman GD, Herrinton LJ: Obesity and multiple myeloma. Cancer Causes Control 56. Nowakowski GS, Witzig TE, Dingli D, et al: Circulating plasma cells detected by flow
5:479–483, 1994. cytometry as a predictor of survival in 302 patients with newly diagnosed multiple mye-
24. Carson KR, Bates ML, Tomasson MH: The skinny on obesity and plasma cell myeloma: loma. Blood 106:2276–2279, 2005.
A review of the literature. Bone Marrow Transplant 49:1009–1015, 2014. 57. Peceliunas V, Janiulioniene A, Matuzeviciene R, et al: Circulating plasma cells predict the
25. Alexander DD, Mink PJ, Adami HO, et al: Multiple myeloma: A review of the epidemi- outcome of relapsed or refractory multiple myeloma. Leuk Lymphoma 53:641–647, 2012.
ologic literature. Int J Cancer 120 Suppl 12:40–61, 2007. 58. Paiva B, Paino T, Sayagues JM, et al: Detailed characterization of multiple myeloma
26. Riedel DA, Pottern LM: The epidemiology of multiple myeloma. Hematol Oncol Clin circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian
North Am 6:225–247, 1992. distribution profile. Blood 122:3591–3598, 2013.
27. van Kaick G, Dalheimer A, Hornik S, et al: The German thorotrast study: Recent results 59. Cremer FW, Bila J, Buck I, et al: Delineation of distinct subgroups of multiple myeloma
and assessment of risks. Radiat Res 152:S64–S71, 1999. and a model for clonal evolution based on interphase cytogenetics. Genes Chromosomes
28. Ichimaru M, Ishimaru T, Mikami M, et al: Multiple myeloma among atomic bomb sur- Cancer 44:194–203, 2005.
vivors in Hiroshima and Nagasaki, 1950–1976: Relationship to radiation dose absorbed 60. Smadja NV, Fruchart C, Isnard F, et al: Chromosomal analysis in multiple myeloma:
by marrow. J Natl Cancer Inst 69:323–328, 1982. Cytogenetic evidence of two different diseases. Leukemia 12:960–969, 1998.
29. Neriishi K, Nakashima E, Suzuki G: Monoclonal gammopathy of undetermined signif- 61. Zandecki M, Lai JL, Facon T: Multiple myeloma: Almost all patients are cytogenetically
icance in atomic bomb survivors: Incidence and transformation to multiple myeloma. abnormal. Br J Haematol 94:217–227, 1996.
Br J Haematol 121:405–410, 2003. 62. Carrasco DR, Tonon G, Huang Y, et al: High-resolution genomic profiles define distinct
30. Eriksson M, Karlsson M: Occupational and other environmental factors and multiple clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 9:313–325, 2006.
myeloma: A population based case-control study. Br J Ind Med 49:95–103, 1992. 63. Walker BA, Leone PE, Chiecchio L, et al: A compendium of myeloma-associated chro-
31. Kristensen P, Andersen A, Irgens LM, et al: Incidence and risk factors of cancer among mosomal copy number abnormalities and their prognostic value. Blood 116:e56–e65,
men and women in Norwegian agriculture. Scand J Work Environ Health 22:14–26, 2010.
1996. 64. Tabernero D, San Miguel JF, Garcia-Sanz M, et al: Incidence of chromosome numeri-
32. Isomaki HA, Hakulinen T, Joutsenlahti U: Excess risk of lymphomas, leukemia and cal changes in multiple myeloma: Fluorescence in situ hybridization analysis using 15
myeloma in patients with rheumatoid arthritis. J Chronic Dis 31:691–696, 1978. chromosome-specific probes. Am J Pathol 149:153–161, 1996.
33. Raposo A, Peixoto D, Bogas M: Monoclonal gammopathy and rheumatic diseases. Acta 65. Fonseca R, Debes-Marun CS, Picken EB, et al: The recurrent IgH translocations
Reumatol Port 39:12–18, 2014. are highly associated with nonhyperdiploid variant multiple myeloma. Blood 102:
34. McShane CM, Murray LJ, Landgren O, et al: Prior autoimmune disease and risk of 2562–2567, 2003.
monoclonal gammopathy of undetermined significance and multiple myeloma: A sys- 66. Meeus P, Stul MS, Mecucci C, et al: Molecular breakpoints of t(11;14)(q13;q32) in mul-
tematic review. Cancer Epidemiol Biomarkers Prev 23:332–342, 2014. tiple myeloma. Cancer Genet Cytogenet 83:25–27, 1995.
35. Duberg AS, Nordstrom M, Torner A, et al: Non-Hodgkin’s lymphoma and other non- 67. Raynaud SD, Bekri S, Leroux D, et al: Expanded range of 11q13 breakpoints with differ-
hepatic malignancies in Swedish patients with hepatitis C virus infection. Hepatology ing patterns of cyclin D1 expression in B-cell malignancies. Genes Chromosomes Cancer
41:652–659, 2005. 8:80–87, 1993.
36. Goedert JJ, Cote TR, Virgo P, et al: Spectrum of AIDS-associated malignant disorders. 68. Ronchetti D, Finelli P, Richelda R, et al: Molecular analysis of 11q13 breakpoints in
Lancet 351:1833–1839, 1998. multiple myeloma. Blood 93:1330–1337, 1999.
37. Brown LM, Gridley G, Check D, et al: Risk of multiple myeloma and monoclonal gam- 69. Hoyer JD, Hanson CA, Fonseca R, et al: The (11;14)(q13;q32) translocation in multi-
mopathy of undetermined significance among white and black male United States vet- ple myeloma. A morphologic and immunohistochemical study. Am J Clin Pathol 113:
erans with prior autoimmune, infectious, inflammatory, and allergic disorders. Blood 831–837, 2000.
111:3388–3394, 2008. 70. Soverini S, Cavo M, Cellini C, et al: Cyclin D1 overexpression is a favorable prognostic
38. Gramenzi A, Buttino I, D’Avanzo B, et al: Medical history and the risk of multiple mye- variable for newly diagnosed multiple myeloma patients treated with high-dose chemo-
loma. Br J Cancer 63:769–772, 1991. therapy and single or double autologous transplantation. Blood 102:1588–1594, 2003.
39. Soulier J, Grollet L, Oksenhendler E, et al: Kaposi’s sarcoma-associated herpesvirus-like 71. Shaughnessy J Jr, Gabrea A, Qi Y, et al: Cyclin D3 at 6p21 is dysregulated by recur-
DNA sequences in multicentric Castleman’s disease. Blood 86:1276–1280, 1995. rent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood
40. Chauhan D, Bharti A, Raje N, et al: Detection of Kaposi’s sarcoma herpesvirus DNA 98:217–223, 2001.
sequences in multiple myeloma bone marrow stromal cells. Blood 93:1482–1486, 72. Bergsagel PL, Kuehl WM, Zhan F, et al: Cyclin D dysregulation: An early and unifying
1999. pathogenic event in multiple myeloma. Blood 106:296–303, 2005.
41. Rettig MB, Ma HJ, Vescio RA, et al: Kaposi’s sarcoma-associated herpesvirus infection 73. Gertz MA, Lacy MQ, Dispenzieri A, et al: Clinical implications of t(11;14)(q13;q32),
of bone marrow dendritic cells from multiple myeloma patients. Science 276:1851– t(4;14)(p16.3;q32), and –17p13 in myeloma patients treated with high-dose therapy.
1854, 1997. Blood 106:2837–2840, 2005.
42. Kuehl WM, Bergsagel PL: Multiple myeloma: Evolving genetic events and host interac- 74. Keats JJ, Reiman T, Maxwell CA, et al: In multiple myeloma, t(4;14)(p16;q32) is an
tions. Nat Rev Cancer 2:175–187, 2002. adverse prognostic factor irrespective of FGFR3 expression. Blood 101:1520–1529,
43. Kuehl WM, Bergsagel PL: Molecular pathogenesis of multiple myeloma and its prema- 2003.
lignant precursor. J Clin Invest 122:3456–3463, 2012. 75. Martinez-Garcia E, Popovic R, Min DJ, et al: The MMSET histone methyl transferase
44. Hajek R, Okubote SA, Svachova H: Myeloma stem cell concepts, heterogeneity and switches global histone methylation and alters gene expression in t(4;14) multiple mye-
plasticity of multiple myeloma. Br J Haematol 163:551–564, 2013. loma cells. Blood 117:211–220, 2011.
45. Bast EJ, van Camp B, Reynaert P, et al: Idiotypic peripheral blood lymphocytes in 76. Richelda R, Ronchetti D, Baldini L, et al: A novel chromosomal translocation t(4; 14)
monoclonal gammopathy. Clin Exp Immunol 47:677–682, 1982. (p16.3; q32) in multiple myeloma involves the fibroblast growth-factor receptor 3 gene.
46. Berenson J, Wong R, Kim K, et al: Evidence for peripheral blood B lymphocyte but not Blood 90:4062–4070, 1997.
T lymphocyte involvement in multiple myeloma. Blood 70:1550–1553, 1987. 77. Chesi M, Brents LA, Ely SA, et al: Activated fibroblast growth factor receptor 3 is
47. Mellstedt H, Holm G, Pettersson D, et al: Idiotype-bearing lymphoid cells in plasma cell an oncogene that contributes to tumor progression in multiple myeloma. Blood 97:
neoplasia. Clin Haematol 11:65–86, 1982. 729–736, 2001.
Kaushansky_chapter 107_p1733-1772.indd 1762 9/21/15 12:35 PM

