Page 1787 - Williams Hematology ( PDFDrive )
P. 1787

1762           Part XI:  Malignant Lymphoid Diseases                                                                                                                                             Chapter 107:  Myeloma           1763




                 15.  Chubb D, Weinhold N, Broderick P, et al: Common variation at 3q26.2, 6p21.33,     48.  Pilarski LM, Jensen GS: Monoclonal circulating B cells in multiple myeloma. A contin-
                  17p11.2 and 22q13.1 influences multiple myeloma risk. Nat Genet 45:1221–1225, 2013.  uously differentiating, possibly invasive, population as defined by expression of CD45
                 16.  Morgan GJ, Johnson DC, Weinhold N, et al: Inherited genetic susceptibility to multiple   isoforms and adhesion molecules. Hematol Oncol Clin North Am 6:297–322, 1992.
                  myeloma. Leukemia 28:518–524, 2014.                   49.  Pilarski LM, Mant MJ, Ruether BA: Pre-B cells in peripheral blood of multiple myeloma
                 17.  Weinhold N, Johnson DC, Rawstron AC, et al: Inherited genetic susceptibility to mono-  patients. Blood 66:416–422, 1985.
                  clonal gammopathy of unknown significance. Blood 123:2513–2517; quiz 2593, 2014.    50.  Ruiz-Arguelles GJ, Katzmann JA, Greipp PR, et al: Multiple myeloma: Circulating lym-
                 18.  Grass S, Preuss KD, Ahlgrimm M, et al: Association of a dominantly inherited hyper-  phocytes that express plasma cell antigens. Blood 64:352–356, 1984.
                  phosphorylated paraprotein target with sporadic and familial multiple myeloma and     51.  Chen BJ, Epstein J: Circulating clonal lymphocytes in myeloma constitute a minor sub-
                  monoclonal gammopathy of undetermined significance: A case-control study. Lancet   population of B cells. Blood 87:1972–1976, 1996.
                  Oncol 10:950–956, 2009.                               52.  Paiva B, Perez-Andres M, Vidriales MB, et al: Competition between clonal plasma cells
                 19.  Zwick C, Held G, Auth M, et al: Over one-third of African-American MGUS and mul-  and normal cells for potentially overlapping bone marrow niches is associated with a
                  tiple myeloma patients are carriers of hyperphosphorylated paratarg-7, an autosomal   progressively altered cellular distribution in MGUS vs myeloma. Leukemia 25:697–706,
                  dominantly inherited risk factor for MGUS/MM. Int J Cancer 135:934–938, 2014.  2011.
                 20.  Soderberg KC, Kaprio J, Verkasalo PK, et al: Overweight, obesity and risk of haema-    53.  Ghobrial IM: Myeloma as a model for the process of metastasis: Implications for ther-
                  tological malignancies: A cohort study of Swedish and Finnish twins. Eur J Cancer   apy. Blood 120:20–30, 2012.
                  45:1232–1238, 2009.                                   54.  Kumar S, Rajkumar SV, Kyle RA, et al: Prognostic value of circulating plasma cells in
                 21.  Wallin A, Larsson SC: Body mass index and risk of multiple myeloma: A meta-analysis   monoclonal gammopathy of undetermined significance. J Clin Oncol 23:5668–5674,
                  of prospective studies. Eur J Cancer 47:1606–1615, 2011.  2005.
                 22.  Calle EE, Rodriguez C, Walker-Thurmond K, et al: Overweight, obesity, and mortality     55.  Bianchi G, Kyle RA, Larson DR, et al: High levels of peripheral blood circulating plasma
                  from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 348:1625–  cells as a specific risk factor for progression of smoldering multiple myeloma. Leukemia
                  1638, 2003.                                            27:680–685, 2013.
                 23.  Friedman GD, Herrinton LJ: Obesity and multiple myeloma. Cancer Causes Control     56.  Nowakowski GS, Witzig TE, Dingli D, et al: Circulating plasma cells detected by flow
                  5:479–483, 1994.                                       cytometry as a predictor of survival in 302 patients with newly diagnosed multiple mye-
                 24.  Carson KR, Bates ML, Tomasson MH: The skinny on obesity and plasma cell myeloma:   loma. Blood 106:2276–2279, 2005.
                  A review of the literature. Bone Marrow Transplant 49:1009–1015, 2014.    57.  Peceliunas V, Janiulioniene A, Matuzeviciene R, et al: Circulating plasma cells predict the
                 25.  Alexander DD, Mink PJ, Adami HO, et al: Multiple myeloma: A review of the epidemi-  outcome of relapsed or refractory multiple myeloma. Leuk Lymphoma 53:641–647, 2012.
                  ologic literature. Int J Cancer 120 Suppl 12:40–61, 2007.    58.  Paiva B, Paino T, Sayagues JM, et al: Detailed characterization of multiple myeloma
                 26.  Riedel DA, Pottern LM: The epidemiology of multiple myeloma. Hematol Oncol Clin   circulating tumor cells shows unique phenotypic, cytogenetic, functional, and circadian
                  North Am 6:225–247, 1992.                              distribution profile. Blood 122:3591–3598, 2013.
                 27.  van Kaick G, Dalheimer A, Hornik S, et al: The German thorotrast study: Recent results     59.  Cremer FW, Bila J, Buck I, et al: Delineation of distinct subgroups of multiple myeloma
                  and assessment of risks. Radiat Res 152:S64–S71, 1999.  and a model for clonal evolution based on interphase cytogenetics. Genes Chromosomes
                 28.  Ichimaru M, Ishimaru T, Mikami M, et al: Multiple myeloma among atomic bomb sur-  Cancer 44:194–203, 2005.
                  vivors in Hiroshima and Nagasaki, 1950–1976: Relationship to radiation dose absorbed     60.  Smadja NV, Fruchart C, Isnard F, et al: Chromosomal analysis in multiple myeloma:
                  by marrow. J Natl Cancer Inst 69:323–328, 1982.        Cytogenetic evidence of two different diseases. Leukemia 12:960–969, 1998.
                 29.  Neriishi K, Nakashima E, Suzuki G: Monoclonal gammopathy of undetermined signif-    61.  Zandecki M, Lai JL, Facon T: Multiple myeloma: Almost all patients are cytogenetically
                  icance in atomic bomb survivors: Incidence and transformation to multiple myeloma.   abnormal. Br J Haematol 94:217–227, 1996.
                  Br J Haematol 121:405–410, 2003.                      62.  Carrasco DR, Tonon G, Huang Y, et al: High-resolution genomic profiles define distinct
                 30.  Eriksson M, Karlsson M: Occupational and other environmental factors and multiple   clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell 9:313–325, 2006.
                  myeloma: A population based case-control study. Br J Ind Med 49:95–103, 1992.    63.  Walker BA, Leone PE, Chiecchio L, et al: A compendium of myeloma-associated chro-
                 31.  Kristensen P, Andersen A, Irgens LM, et al: Incidence and risk factors of cancer among   mosomal copy number abnormalities and their prognostic value. Blood 116:e56–e65,
                  men and women in Norwegian agriculture. Scand J Work Environ Health 22:14–26,   2010.
                  1996.                                                 64.  Tabernero D, San Miguel JF, Garcia-Sanz M, et al: Incidence of chromosome numeri-
                 32.  Isomaki HA, Hakulinen T, Joutsenlahti U: Excess risk of lymphomas, leukemia and   cal changes in multiple myeloma: Fluorescence in situ hybridization analysis using 15
                  myeloma in patients with rheumatoid arthritis. J Chronic Dis 31:691–696, 1978.  chromosome-specific probes. Am J Pathol 149:153–161, 1996.
                 33.  Raposo A, Peixoto D, Bogas M: Monoclonal gammopathy and rheumatic diseases. Acta     65.  Fonseca R, Debes-Marun CS, Picken EB, et al: The recurrent IgH translocations
                  Reumatol Port 39:12–18, 2014.                          are highly associated with nonhyperdiploid variant multiple myeloma.  Blood 102:
                 34.  McShane CM, Murray LJ, Landgren O, et al: Prior autoimmune disease and risk of   2562–2567, 2003.
                  monoclonal gammopathy of undetermined significance and multiple myeloma: A sys-    66.  Meeus P, Stul MS, Mecucci C, et al: Molecular breakpoints of t(11;14)(q13;q32) in mul-
                  tematic review. Cancer Epidemiol Biomarkers Prev 23:332–342, 2014.  tiple myeloma. Cancer Genet Cytogenet 83:25–27, 1995.
                 35.  Duberg AS, Nordstrom M, Torner A, et al: Non-Hodgkin’s lymphoma and other non-    67.  Raynaud SD, Bekri S, Leroux D, et al: Expanded range of 11q13 breakpoints with differ-
                  hepatic malignancies in Swedish patients with hepatitis C virus infection. Hepatology   ing patterns of cyclin D1 expression in B-cell malignancies. Genes Chromosomes Cancer
                  41:652–659, 2005.                                      8:80–87, 1993.
                 36.  Goedert JJ, Cote TR, Virgo P, et al: Spectrum of AIDS-associated malignant disorders.     68.  Ronchetti D, Finelli P, Richelda R, et al: Molecular analysis of 11q13 breakpoints in
                  Lancet 351:1833–1839, 1998.                            multiple myeloma. Blood 93:1330–1337, 1999.
                 37.  Brown LM, Gridley G, Check D, et al: Risk of multiple myeloma and monoclonal gam-    69.  Hoyer JD, Hanson CA, Fonseca R, et al: The (11;14)(q13;q32) translocation in multi-
                  mopathy of undetermined significance among white and black male United States vet-  ple myeloma. A morphologic and immunohistochemical study. Am J Clin Pathol 113:
                  erans with prior autoimmune, infectious, inflammatory, and allergic disorders. Blood   831–837, 2000.
                  111:3388–3394, 2008.                                  70.  Soverini S, Cavo M, Cellini C, et al: Cyclin D1 overexpression is a favorable prognostic
                 38.  Gramenzi A, Buttino I, D’Avanzo B, et al: Medical history and the risk of multiple mye-  variable for newly diagnosed multiple myeloma patients treated with high-dose chemo-
                  loma. Br J Cancer 63:769–772, 1991.                    therapy and single or double autologous transplantation. Blood 102:1588–1594, 2003.
                 39.  Soulier J, Grollet L, Oksenhendler E, et al: Kaposi’s sarcoma-associated herpesvirus-like     71.  Shaughnessy J Jr, Gabrea A, Qi Y, et al: Cyclin D3 at 6p21 is dysregulated by recur-
                  DNA sequences in multicentric Castleman’s disease. Blood 86:1276–1280, 1995.  rent chromosomal translocations to immunoglobulin loci in multiple myeloma. Blood
                 40.  Chauhan D, Bharti A, Raje N, et al: Detection of Kaposi’s sarcoma herpesvirus DNA   98:217–223, 2001.
                  sequences in multiple myeloma bone marrow stromal cells.  Blood 93:1482–1486,       72.  Bergsagel PL, Kuehl WM, Zhan F, et al: Cyclin D dysregulation: An early and unifying
                  1999.                                                  pathogenic event in multiple myeloma. Blood 106:296–303, 2005.
                 41.  Rettig MB, Ma HJ, Vescio RA, et al: Kaposi’s sarcoma-associated herpesvirus infection     73.  Gertz MA, Lacy MQ, Dispenzieri A, et al: Clinical implications of t(11;14)(q13;q32),
                  of bone marrow dendritic cells from multiple myeloma patients.  Science 276:1851–  t(4;14)(p16.3;q32), and –17p13 in myeloma patients treated with high-dose therapy.
                  1854, 1997.                                            Blood 106:2837–2840, 2005.
                 42.  Kuehl WM, Bergsagel PL: Multiple myeloma: Evolving genetic events and host interac-    74.  Keats JJ, Reiman T, Maxwell CA, et al: In multiple myeloma, t(4;14)(p16;q32) is an
                  tions. Nat Rev Cancer 2:175–187, 2002.                 adverse prognostic factor irrespective of FGFR3 expression.  Blood 101:1520–1529,
                 43.  Kuehl WM, Bergsagel PL: Molecular pathogenesis of multiple myeloma and its prema-  2003.
                  lignant precursor. J Clin Invest 122:3456–3463, 2012.    75.  Martinez-Garcia E, Popovic R, Min DJ, et al: The MMSET histone methyl transferase
                 44.  Hajek R, Okubote SA, Svachova H: Myeloma stem cell concepts, heterogeneity and   switches global histone methylation and alters gene expression in t(4;14) multiple mye-
                  plasticity of multiple myeloma. Br J Haematol 163:551–564, 2013.  loma cells. Blood 117:211–220, 2011.
                 45.  Bast EJ, van Camp B, Reynaert P, et al: Idiotypic peripheral blood lymphocytes in     76.  Richelda R, Ronchetti D, Baldini L, et al: A novel chromosomal translocation t(4; 14)
                  monoclonal gammopathy. Clin Exp Immunol 47:677–682, 1982.  (p16.3; q32) in multiple myeloma involves the fibroblast growth-factor receptor 3 gene.
                 46.  Berenson J, Wong R, Kim K, et al: Evidence for peripheral blood B lymphocyte but not   Blood 90:4062–4070, 1997.
                  T lymphocyte involvement in multiple myeloma. Blood 70:1550–1553, 1987.    77.  Chesi M, Brents LA, Ely SA, et al: Activated fibroblast growth factor receptor 3 is
                 47.  Mellstedt H, Holm G, Pettersson D, et al: Idiotype-bearing lymphoid cells in plasma cell   an oncogene that contributes to tumor progression in multiple myeloma. Blood 97:
                  neoplasia. Clin Haematol 11:65–86, 1982.               729–736, 2001.







          Kaushansky_chapter 107_p1733-1772.indd   1762                                                                 9/21/15   12:35 PM
   1782   1783   1784   1785   1786   1787   1788   1789   1790   1791   1792