Page 1788 - Williams Hematology ( PDFDrive )
P. 1788

1762  Part XI:  Malignant Lymphoid Diseases                                         Chapter 107:  Myeloma            1763




                    78.  Intini D, Baldini L, Fabris S, et al: Analysis of FGFR3 gene mutations in multiple mye-    107. Keats JJ, Fonseca R, Chesi M, et al: Promiscuous mutations activate the noncanonical
                     loma patients with t(4;14). Br J Haematol 114:362–364, 2001.  NF-kappaB pathway in multiple myeloma. Cancer Cell 12:131–144, 2007.
                    79.  Ronchetti D, Greco A, Compasso S, et al: Deregulated FGFR3 mutants in multiple     108. Bolli N, Avet-Loiseau H, Wedge DC, et al: Heterogeneity of genomic evolution and
                     myeloma cell lines with t(4;14): Comparative analysis of Y373C, K650E and the novel   mutational profiles in multiple myeloma. Nat Commun 5:2997, 2014.
                     G384D mutations. Oncogene 20:3553–3562, 2001.        109. Egan JB, Kortuem KM, Kurdoglu A, et al: Extramedullary myeloma whole genome
                    80.  Chesi M, Bergsagel PL, Shonukan OO, et al: Frequent dysregulation of the c-maf   sequencing reveals novel mutations in Cereblon, proteasome subunit G2 and the glu-
                     proto-oncogene at 16q23 by translocation to an Ig locus in multiple myeloma. Blood   cocorticoid receptor in multidrug resistant disease. Br J Haematol 161:748–751, 2013.
                     91:4457–4463, 1998.                                  110. Egan JB, Shi CX, Tembe W, et al: Whole-genome sequencing of multiple myeloma from
                    81.  Hurt EM, Wiestner A, Rosenwald A, et al: Overexpression of c-maf is a frequent onco-  diagnosis  to plasma cell leukemia reveals genomic initiating events, evolution, and
                     genic event in multiple myeloma that promotes proliferation and pathological interac-  clonal tides. Blood 120:1060–1066, 2012.
                     tions with bone marrow stroma. Cancer Cell 5:191–199, 2004.    111. Keats JJ, Chesi M, Egan JB, et al: Clonal competition with alternating dominance in
                    82.  Neri P, Ren L, Azab AK, et al: Integrin beta7-mediated regulation of multiple myeloma   multiple myeloma. Blood 120:1067–1076, 2012.
                     cell adhesion, migration, and invasion. Blood 117:6202–6213, 2011.    112. Lohr JG, Stojanov P, Carter SL, et al: Widespread genetic heterogeneity in multiple mye-
                    83.  Avet-Loiseau H, Facon T, Daviet A, et al: 14q32 translocations and monosomy 13   loma: Implications for targeted therapy. Cancer Cell 25:91–101, 2014.
                     observed in monoclonal gammopathy of undetermined significance delineate a mul-    113. Schmidt J, Braggio E, Kortuem KM, et al: Genome-wide studies in multiple myeloma
                     tistep process for the oncogenesis of multiple myeloma. Intergroupe Francophone du   identify XPO1/CRM1 as a critical target validated using the selective nuclear export
                     Myelome. Cancer Res 59:4546–4550, 1999.               inhibitor KPT-276. Leukemia 27:2357–2365, 2013.
                    84.  Drach J, Schuster J, Nowotny H, et al: Multiple myeloma: High incidence of chromoso-    114. Corradini P, Ladetto M, Voena C, et al: Mutational activation of N- and K-ras onco-
                     mal aneuploidy as detected by interphase fluorescence in situ hybridization. Cancer Res   genes in plasma cell dyscrasias. Blood 81:2708–2713, 1993.
                     55:3854–3859, 1995.                                  115. Liu P, Leong T, Quam L, et al: Activating mutations of N- and K-ras in multiple mye-
                    85.  Zandecki M, Obein V, Bernardi F, et al: Monoclonal gammopathy of undetermined   loma show different clinical associations: Analysis of the Eastern Cooperative Oncol-
                     significance: Chromosome changes are a common finding within bone marrow plasma   ogy Group Phase III Trial. Blood 88:2699–2706, 1996.
                     cells. Br J Haematol 90:693–696, 1995.               116. Matozaki S, Nakagawa T, Nakao Y, et al: RAS gene mutations in multiple myeloma and
                    86.  Avet-Loiseau H, Li C, Magrangeas F, et al: Prognostic significance of copy-number   related monoclonal gammopathies. Kobe J Med Sci 37:35–45, 1991.
                     alterations in multiple myeloma. J Clin Oncol 27:4585–4590, 2009.    117. Paquette RL, Berenson J, Lichtenstein A, et al: Oncogenes in multiple myeloma: Point
                    87.  Sawyer JR: The prognostic significance of cytogenetics and molecular profiling in mul-  mutation of N-ras. Oncogene 5:1659–1663, 1990.
                     tiple myeloma. Cancer Genet 204:3–12, 2011.          118. Bezieau S, Devilder MC, Avet-Loiseau H, et al: High incidence of N and K-Ras acti-
                    88.  Avet-Louseau H, Daviet A, Sauner S, et al: Chromosome 13 abnormalities in multiple   vating mutations in multiple myeloma and primary plasma cell leukemia at diagnosis.
                     myeloma are mostly monosomy 13. Br J Haematol 111:1116–1117, 2000.  Hum Mutat 18:212–224, 2001.
                    89.  Fonseca R, Harrington D, Oken MM, et al: Biological and prognostic significance of     119. Chng WJ, Gonzalez-Paz N, Price-Troska T, et al: Clinical and biological significance of
                     interphase fluorescence in situ hybridization detection of chromosome 13 abnormal-  RAS mutations in multiple myeloma. Leukemia 22:2280–2284, 2008.
                     ities (delta13) in multiple myeloma: An Eastern Cooperative Oncology Group study.     120. Rasmussen T, Kuehl M, Lodahl M, et al: Possible roles for activating RAS mutations in
                     Cancer Res 62:715–720, 2002.                          the MGUS to MM transition and in the intramedullary to extramedullary transition in
                    90.  Lode L, Eveillard M, Trichet V, et al: Mutations in TP53 are exclusively associated with   some plasma cell tumors. Blood 105:317–323, 2005.
                     del(17p) in multiple myeloma. Haematologica 95:1973–1976, 2010.    121. Preudhomme C, Facon T, Zandecki M, et al: Rare occurrence of P53 gene mutations in
                    91.  Neri A, Baldini L, Trecca D, et al: P53 gene mutations in multiple myeloma are associ-  multiple myeloma. Br J Haematol 81:440–443, 1992.
                     ated with advanced forms of malignancy. Blood 81:128–135, 1993.    122. Ackermann J, Meidlinger P, Zojer N, et al: Absence of p53 deletions in bone marrow
                    92.  Neben K, Lokhorst HM, Jauch A, et al: Administration of bortezomib before and after   plasma cells of patients with monoclonal gammopathy of undetermined significance.
                     autologous stem cell transplantation improves outcome in multiple myeloma patients   Br J Haematol 103:1161–1163, 1998.
                     with deletion 17p. Blood 119:940–948, 2012.          123. Drach J, Ackermann J, Fritz E, et al: Presence of a p53 gene deletion in patients with
                    93.  Shaughnessy J: Amplification and overexpression of CKS1B at chromosome band 1q21   multiple myeloma predicts for short survival after conventional-dose chemotherapy.
                     is associated with reduced levels of p27Kip1 and an aggressive clinical course in multi-  Blood 92:802–809, 1998.
                     ple myeloma. Hematology 10 Suppl 1:117–126, 2005.    124. Chng WJ, Price-Troska T, Gonzalez-Paz N, et al: Clinical significance of TP53 mutation
                    94.  Hanamura I, Stewart JP, Huang Y, et al: Frequent gain of chromosome band 1q21   in myeloma. Leukemia 21:582–584, 2007.
                     in plasma-cell dyscrasias detected by fluorescence in situ hybridization: Incidence     125. Tiedemann RE, Gonzalez-Paz N, Kyle RA, et al: Genetic aberrations and survival in
                     increases from MGUS to relapsed myeloma and is related to prognosis and disease   plasma cell leukemia. Leukemia 22:1044–1052, 2008.
                     progression following tandem stem-cell transplantation. Blood 108:1724–1732, 2006.    126. Melchor L, Brioli A, Wardell CP, et al: Single-cell genetic analysis reveals the composi-
                    95.  Wu KL, Beverloo B, Lokhorst HM, et al: Abnormalities of chromosome 1p/q are highly   tion of initiating clones and phylogenetic patterns of branching and parallel evolution
                     associated with chromosome 13/13q deletions and are an adverse prognostic factor for   in myeloma. Leukemia 28:1705–1715, 2014.
                     the outcome of high-dose chemotherapy in patients with multiple myeloma. Br J Hae-    127. Zhan F, Barlogie B, Mulligan G, et al: High-risk myeloma: A gene expression based
                     matol 136:615–623, 2007.                              risk-stratification model for newly diagnosed multiple myeloma treated with high-dose
                    96.  Sawyer JR, Tian E, Heuck CJ, et al: Jumping translocations of 1q12 in multiple mye-  therapy is predictive of outcome in relapsed disease treated with single-agent borte-
                     loma: A novel mechanism for deletion of 17p in cytogenetically defined high-risk dis-  zomib or high-dose dexamethasone. Blood 111:968–969, 2008.
                     ease. Blood 123:2504–2512, 2014.                     128. Mulligan G, Mitsiades C, Bryant B, et al: Gene expression profiling and correlation
                    97.  Boyd KD, Ross FM, Walker BA, et al: Mapping of chromosome 1p deletions in mye-  with outcome in clinical trials of the proteasome inhibitor bortezomib. Blood 109:3177–
                     loma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions   3188, 2007.
                     associated with adverse survival. Clin Cancer Res 17:7776–7784, 2011.    129. Amin SB, Yip WK, Minvielle S, et al: Gene expression profile alone is inadequate in
                    98.  Leone PE, Walker BA, Jenner MW, et al: Deletions of CDKN2C in multiple myeloma:   predicting complete response in multiple myeloma. Leukemia 28:2229–2234, 2014.
                     Biological and clinical implications. Clin Cancer Res 14:6033–6041, 2008.    130. Caligaris-Cappio F, Bergui L, Gregoretti MG, et al: Role of bone marrow stromal cells
                    99.  Qazilbash MH, Saliba RM, Ahmed B, et al: Deletion of the short arm of chromosome   in the growth of human multiple myeloma. Blood 77:2688–2693, 1991.
                     1 (del 1p) is a strong predictor of poor outcome in myeloma patients undergoing an     131. Grigorieva I, Thomas X, Epstein J: The bone marrow stromal environment is a major
                     autotransplant. Biol Blood Marrow Transplant 13:1066–1072, 2007.  factor in myeloma cell resistance to dexamethasone. Exp Hematol 26:597–603, 1998.
                    100. Chapman MA, Lawrence MS, Keats JJ, et al: Initial genome sequencing and analysis of     132. Hallek M, Bergsagel PL, Anderson KC: Multiple myeloma: Increasing evidence for a
                     multiple myeloma. Nature 471:467–472, 2011.           multistep transformation process. Blood 91:3–21, 1998.
                    101. Avet-Loiseau H, Gerson F, Magrangeas F, et al: Rearrangements of the c-myc oncogene     133. Hideshima T, Mitsiades C, Tonon G, et al: Understanding multiple myeloma pathogen-
                     are present in 15% of primary human multiple myeloma tumors. Blood 98:3082–3086,   esis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 7:585–598,
                     2001.                                                 2007.
                    102. Dib A, Gabrea A, Glebov OK, et al: Characterization of MYC translocations in multiple     134. Damiano JS, Cress AE, Hazlehurst LA, et al: Cell adhesion mediated drug resistance
                     myeloma cell lines. J Natl Cancer Inst Monogr 39:25–31, 2008.  (CAM-DR): Role of integrins and resistance to apoptosis in human myeloma cell lines.
                    103. Gabrea A, Martelli ML, Qi Y, et al: Secondary genomic rearrangements involving   Blood 93:1658–1667, 1999.
                     immunoglobulin or MYC loci show similar prevalences in hyperdiploid and nonhyper-    135. Damiano JS, Dalton WS: Integrin-mediated drug resistance in multiple myeloma. Leuk
                     diploid myeloma tumors. Genes Chromosomes Cancer 47:573–590, 2008.  Lymphoma 38:71–81, 2000.
                    104. Shou Y, Martelli ML, Gabrea A, et al: Diverse karyotypic abnormalities of the c-myc     136. Ridley RC, Xiao H, Hata H, et al: Expression of syndecan regulates human myeloma
                     locus associated with c-myc dysregulation and tumor progression in multiple myeloma.   plasma cell adhesion to type I collagen. Blood 81:767–774, 1993.
                     Proc Natl Acad Sci U S A 97:228–233, 2000.           137. Borset M, Hjertner O, Yaccoby S, et al: Syndecan-1 is targeted to the uropods of polar-
                    105. Annunziata CM, Davis RE, Demchenko Y, et al: Frequent engagement of the classical   ized myeloma cells where it promotes adhesion and sequesters heparin-binding pro-
                     and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple mye-  teins. Blood 96:2528–2536, 2000.
                     loma. Cancer Cell 12:115–130, 2007.                  138. Dhodapkar MV, Abe E, Theus A, et al: Syndecan-1 is a multifunctional regulator of
                    106. Cottini F, Hideshima T, Xu C, et al: Rescue of Hippo coactivator YAP1 triggers DNA   myeloma pathobiology: Control of tumor cell survival, growth, and bone cell differen-
                     damage-induced apoptosis in hematological cancers. Nat Med 20:599–606, 2014.  tiation. Blood 91:2679–2688, 1998.







          Kaushansky_chapter 107_p1733-1772.indd   1763                                                                 9/21/15   12:35 PM
   1783   1784   1785   1786   1787   1788   1789   1790   1791   1792   1793