Page 1852 - Williams Hematology ( PDFDrive )
P. 1852

1826  Part XII:  Hemostasis and Thrombosis            Chapter 111:  Megakaryopoiesis and Thrombopoiesis              1827




                    104. Avraham H, Vannier E, Cowley S, et al: Effects of the stem cell factor, c-kit ligand, on     137. Kondo T, Okabe M, Sanada M, et al: Familial essential thrombocythemia associated
                     human megakaryocytic cells. Blood 79:365, 1992.       with one-base deletion in the 5′-untranslated region of the thrombopoietin gene. Blood
                    105. Ebbe S, Phalen E, Stohlman F Jr: Abnormalities of megakaryocytes in S1-S1d mice.   92:1091, 1998.
                     Blood 42:865, 1973.                                  138. Ghilardi N, Wiestner A, Kikuchi M, et al: Hereditary thrombocythaemia in a Japanese
                    106. Arnold J, Ellis S, Radley JM, Williams N: Compensatory mechanisms in platelet pro-  family is caused by a novel point mutation in the thrombopoietin gene. Br J Haematol
                     duction: The response of Sl/Sld mice to 5-fluorouracil. Exp Hematol 19:24, 1991.  107:310, 1999.
                    107. Hunt P, Zsebo KM, Hokom MM, et al: Evidence that stem cell factor is involved in the     139. Cazzola M, Skoda RC: Translational pathophysiology: A novel molecular mechanism
                     rebound thrombocytosis that follows 5-fluorouracil treatment. Blood 80:904, 1992.  of human disease. Blood 95:3280, 2000.
                    108. Broudy VC: Stem cell factor and hematopoiesis. Blood 90:1345, 1997.    140. Odell TT Jr, McDonald TP, Detwiler TC: Stimulation of platelet production by serum of
                    109. Langley KE, Bennett LG, Wypych J, et al: Soluble stem cell factor in human serum.   platelet-depleted rats. Proc Soc Exp Biol Med 108:428, 1961.
                     Blood 81:656, 1993.                                  141. Nichol JL, Hokom MM, Hornkohl A, et al: Megakaryocyte growth and development
                    110. Cheng HJ, Flanagan JG: Transmembrane kit ligand cleavage does not require a signal in   factor. Analyses of in vitro effects on human megakaryopoiesis and endogenous serum
                     the cytoplasmic domain and occurs at a site dependent on spacing from the membrane.   levels during chemotherapy-induced thrombocytopenia. J Clin Invest 95:2973, 1995.
                     Mol Biol Cell 5:943, 1994.                           142. Kuter DJ, Rosenberg RD: The reciprocal relationship of thrombopoietin (c-Mpl ligand)
                    111. Miyazawa K, Williams DA, Gotoh A, et al: Membrane-bound Steel factor induces more   to changes in the platelet mass during busulfan-induced thrombocytopenia in the rab-
                     persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein   bit. Blood 85:2720, 1995.
                     than its soluble form. Blood 85:641, 1995.           143. Bartocci A, Mastrogiannis DS, Migliorati G, et al: Macrophages specifically regulate the
                    112. Flanagan JG, Chan DC, Leder P: Transmembrane form of the kit ligand growth factor is   concentration of their own growth factor in the circulation. Proc Natl Acad Sci U S A
                     determined by alternative splicing and is missing in the Sld mutant. Cell 64:1025, 1991.  84:6179, 1987.
                    113. Lyman SD, Jacobsen SE: C-kit ligand and Flt3 ligand: Stem/progenitor cell factors with     144. Emmons RV, Reid DM, Cohen RL, et al: Human thrombopoietin levels are high when
                     overlapping yet distinct activities. Blood 91:1101, 1998.  thrombocytopenia is due to megakaryocyte deficiency and low when due to increased
                    114. Ramsfjell V, Borge OJ, Veiby OP, et al: Thrombopoietin, but not erythropoietin, directly   platelet destruction. Blood 87:4068, 1996.
                     stimulates multilineage growth of primitive murine bone marrow progenitor cells in     145. McCarty JM, Sprugel KH, Fox NE, et al: Murine thrombopoietin mRNA levels are
                     synergy with early acting cytokines: Distinct interactions with the ligands for c-kit and   modulated by platelet count. Blood 86:3668, 1995.
                     FLT3. Blood 88:4481, 1996.                           146. de Sauvage FJ, Carver-Moore K, Luoh SM, et al: Physiological regulation of early and
                    115. Piacibello W, Garetto L, Sanavio F, et al: The effects of human FLT3 ligand on in vitro   late stages of megakaryocytopoiesis by thrombopoietin. J Exp Med 183:651, 1996.
                     human megakaryocytopoiesis. Exp Hematol 24:340, 1996.    147. Sungaran R, Markovic B, Chong BH: Localization and regulation of thrombopoie-
                    116. Brasel K, McKenna HJ, Morrissey PJ, et al: Hematologic effects of flt3 ligand in vivo in   tin mRNA expression in human kidney, liver, bone marrow, and spleen using in situ
                     mice. Blood 88:2004, 1996.                            hybridization. Blood 89:101, 1997.
                    117. Kelemen E CI, Tanos B: Demonstration and some properties of human thrombopoietin     148. McIntosh B, Kaushansky K: Marrow stromal production of thrombopoietin is regulated
                     in thrombocythemic sera. Acta Haematol 20:350, 1958.  by transcriptional mechanisms in response to platelet products. Exp Hematol 36:799,
                    118. Wendling F, Varlet P, Charon M, Tambourin P: MPLV: A retrovirus complex inducing   2008.
                     an acute myeloproliferative leukemic disorder in adult mice. Virology 149:242, 1986.    149. Solanilla A, Dechanet J, El Andaloussi A, et al: CD40-ligand stimulates myelopoiesis by
                    119. Souyri M, Vigon I, Penciolelli JF, et al: A putative truncated cytokine receptor gene   regulating flt3-ligand and thrombopoietin production in bone marrow stromal cells.
                     transduced by the myeloproliferative leukemia virus immortalizes hematopoietic pro-  Blood 95:3758, 2000.
                     genitors. Cell 63:1137, 1990.                        150. Sungaran R, Chisholm OT, Markovic B, et al: The role of platelet alpha-granular pro-
                    120. Vigon I, Mornon JP, Cocault L, et al: Molecular cloning and characterization of MPL,   teins in the regulation of thrombopoietin messenger RNA expression in human bone
                     the human homolog of the v-Mpl oncogene: Identification of a member of the hemato-  marrow stromal cells. Blood 95:3094, 2000.
                     poietic growth factor receptor super-family. Proc Natl Acad Sci U S A 89:5640, 1992.    151. Kamura T, Handa H, Hamasaki N, Kitajima S: Characterization of the human throm-
                    121. Cosman D: The hematopoietin receptor superfamily. Cytokine 5:95, 1993.  bopoietin gene promoter. A possible role of an Ets transcription factor, E4TF1/GABP. J
                    122. Skoda RC, Seldin DC, Chiang MK, et al: Murine c-Mpl: A member of the hematopoi-  Biol Chem 272:11361, 1997.
                     etic growth factor receptor superfamily that transduces a proliferative signal. EMBO J     152. Chang MS, McNinch J, Basu R, et al: Cloning and characterization of the human
                     12:2645, 1993.                                        megakaryocyte growth and development factor (MGDF) gene. J Biol Chem 270:511,
                    123. Lok S, Kaushansky K, Holly RD, et al: Cloning and expression of murine thrombopoie-  1995.
                     tin cDNA and stimulation of platelet production in vivo. Nature 369:565, 1994.    153. Rollins BJ: Chemokines. Blood 90:909, 1997.
                    124. Linden HM, Kaushansky K: The glycan domain of thrombopoietin enhances its secre-    154. Broxmeyer HE, Mantel CR, Aronica SM: Biology and mechanisms of action of syner-
                     tion. Biochemistry 39:3044, 2000.                     gistically stimulated myeloid progenitor cell proliferation and suppression by chemok-
                    125. Basser RL, Rasko JE, Clarke K, et al: Thrombopoietic effects of pegylated recombinant   ines. Stem Cells 15(Suppl 1):69, discussion 15(Suppl 1):78, 1997.
                     human megakaryocyte growth and development factor (PEG-rHuMGDF) in patients     155. Shirozu M, Nakano T, Inazawa J, et al: Structure and chromosomal localization of the
                     with advanced cancer. Lancet 348:1279, 1996.          human stromal cell-derived factor 1 (SDF1) gene. Genomics 28:495, 1995.
                    126. Kaushansky K, Broudy VC, Grossmann A, et al: Thrombopoietin expands erythroid     156. Luster AD: Chemokines—Chemotactic cytokines that mediate inflammation. N Engl J
                     progenitors, increases red cell production, and enhances erythroid recovery after mye-  Med 338:436, 1998.
                     losuppressive therapy. J Clin Invest 96:1683, 1995.    157. Nagasawa  T,  Hirota  S,  Tachibana  K,  et  al:  Defects  of  B-cell  lymphopoiesis  and
                    127. Farese AM, Hunt P, Boone T, MacVittie TJ: Recombinant human megakaryocyte   bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature
                     growth and development factor stimulates thrombocytopoiesis in normal nonhuman   382:635, 1996.
                     primates. Blood 86:54, 1995.                         158. Ma Q, Jones D, Borghesani PR, et al: Impaired B-lymphopoiesis, myelopoiesis, and
                    128. Akahori H, Shibuya K, Obuchi M, et al: Effect of recombinant human thrombopoietin   derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl
                     in nonhuman primates with chemotherapy-induced thrombocytopenia. Br J Haematol   Acad Sci U S A 95:9448, 1998.
                     94:722, 1996.                                        159. Aiuti A, Webb IJ, Bleul C, et al: The chemokine SDF-1 is a chemoattractant for human
                    129. Neelis KJ, Hartong SC, Egeland T, et al: The efficacy of single-dose administration of   CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the
                     thrombopoietin with coadministration of either granulocyte/macrophage or granulocyte   mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185:111, 1997.
                     colony-stimulating factor in myelosuppressed rhesus monkeys. Blood 90:2565, 1997.    160. Wang JF, Liu ZY, Groopman JE: The alpha-chemokine receptor CXCR4 is expressed on
                    130. Gurney AL, Carver-Moore K, de Sauvage FJ, Moore MW: Thrombocytopenia in   the megakaryocytic lineage from progenitor to platelets and modulates migration and
                     c-Mpl–deficient mice. Science 265:1445, 1994.         adhesion. Blood 92:756, 1998.
                    131. van den Oudenrijn S, Bruin M, Folman CC, et al: Mutations in the thrombopoietin     161. Hamada T, Mohle R, Hesselgesser J, et al: Transendothelial migration of megakaryo-
                     receptor, Mpl, in children with congenital amegakaryocytic thrombocytopenia. Br J   cytes in response to stromal cell-derived factor 1 (SDF-1) enhances platelet formation.
                     Haematol 110:441, 2000.                               J Exp Med 188:539, 1998.
                    132. Ballmaier M, Germeshausen M, Schulze H, et al: C-mpl mutations are the cause of     162. Daopin S, Piez KA, Ogawa Y, Davies DR: Crystal structure of transforming growth
                     congenital amegakaryocytic thrombocytopenia. Blood 97:139, 2001.  factor-beta 2: An unusual fold for the superfamily. Science 257:369, 1992.
                    133. Sohma Y, Akahori H, Seki N, et al: Molecular cloning and chromosomal localization of     163. Keller JR, Mantel C, Sing GK, et al: Transforming growth factor beta 1 selectively reg-
                     the human thrombopoietin gene. FEBS Lett 353:57, 1994.  ulates early murine hematopoietic progenitors and inhibits the growth of IL-3-depen-
                    134. Morris  D:  Cis-Acting mRNA structures in gene-specific translational control, in   dent myeloid leukemia cell lines. J Exp Med 168:737, 1988.
                     Post-Transcriptional Gene Regulation, edited by Harford JB, Morris DR, p 165. Wiley-    164. Dybedal I, Jacobsen SE: Transforming growth factor beta (TGF-beta), a potent inhib-
                     Liss, New York, 1997.                                 itor of erythropoiesis: Neutralizing TGF-beta antibodies show erythropoietin as a
                    135. Wiestner A, Schlemper RJ, Van der Maas AP, Skoda RC: An activating splice donor   potent stimulator of murine burst-forming unit erythroid colony formation in the
                     mutation in the thrombopoietin gene causes hereditary thrombocythaemia. Nat Genet   absence of a burst-promoting activity. Blood 86:949, 1995.
                     18:49, 1998.                                         165. Ishibashi T, Miller SL, Burstein SA: Type beta transforming growth factor is a potent
                    136. Jorgensen MJ, Raskind WH, Wolff JF, et al: Familial thrombocytosis associated with   inhibitor of murine megakaryocytopoiesis in vitro. Blood 69:1737, 1987.
                     overproduction of thrombopoietin due to a novel splice donor site mutation. Blood     166. Kuter DJ, Gminski DM, Rosenberg RD: Transforming growth factor beta inhibits
                     92:205a, 1998.                                        megakaryocyte growth and endomitosis. Blood 79:619, 1992.







          Kaushansky_chapter 111_p1813-1828.indd   1827                                                                 9/21/15   4:11 PM
   1847   1848   1849   1850   1851   1852   1853   1854   1855   1856   1857