Page 1936 - Williams Hematology ( PDFDrive )
P. 1936
1910 Part XII: Hemostasis and Thrombosis Chapter 112: Platelet Morphology, Biochemistry, and Function 1911
1654. Barry WT, et al: Molecular basis of CIB binding to the integrin alpha IIb cytoplasmic 1686. Schoenwaelder SM, et al: RhoA sustains integrin alpha IIbbeta 3 adhesion contacts
domain. J Biol Chem 277(32):28877–28883, 2002. under high shear. J Biol Chem 277(17):14738–14746, 2002.
1655. Zhang J, et al: Phosphoinositide 3-kinase gamma and p85/phosphoinositide 3-kinase 1687. Soulet C, et al: Characterisation of Rac activation in thrombin- and collagen-stimu-
in platelets. Relative activation by thrombin receptor or beta-phorbol myristate ace- lated human blood platelets. FEBS Lett 507(3):253–258, 2001.
tate and roles in promoting the ligand-binding function of alphaIIbbeta3 integrin. J 1688. Vidal C, et al: Cdc42/Rac1-dependent activation of the p21-activated kinase (PAK)
Biol Chem 271(11):6265–6272, 1996. regulates human platelet lamellipodia spreading: Implication of the cortical-actin
1656. Rittenhouse SE, Phosphoinositide 3-kinase activation and platelet function. Blood binding protein cortactin. Blood 100(13):4462–4469, 2002.
88(12):4401–4414, 1996. 1689. Moers A, Wettschureck N, Offermanns S: G13-mediated signaling as a potential target
1657. Hartwig JH, et al: D3 phosphoinositides and outside-in integrin signaling by glyco- for antiplatelet drugs. Drug News Perspect 17(8):493–498, 2004.
protein IIb-IIIa mediate platelet actin assembly and filopodial extension induced by 1690. Soulet C, et al: A differential role of the platelet ADP receptors P2Y1 and P2Y12 in Rac
phorbol 12-myristate 13-acetate. J Biol Chem 271(51):32986–32993, 1996. activation. J Thromb Haemost 3(10):2296–2306, 2005.
1658. Kucera GL, Rittenhouse SE: Human platelets form 3-phosphorylated phospho- 1691. Azim AC, et al: Activation of the small GTPases, rac and cdc42, after ligation of the
inositides in response to α-thrombin, U46619, or GTPgammaS. J Biol Chem platelet PAR-1 receptor. Blood 95(3):959–964, 2000.
265:5345–5348, 1990. 1692. Shock DD, et al: Ras activation in platelets after stimulation of the thrombin receptor,
1659. Banfic H, Downes CP, Rittenhouse SE: Biphasic activation of PKBalpha/Akt in plate- thromboxane A2 receptor or protein kinase C. Biochem J 321 (Pt 2):525–530, 1997.
lets. Evidence for stimulation both by phosphatidylinositol 3,4-bisphosphate, pro- 1693. Omerovic J, et al: Ras isoform abundance and signalling in human cancer cell lines.
duced via a novel pathway, and by phosphatidylinositol 3,4,5-trisphosphate. J Biol Oncogene 27(19):2754–2762, 2008.
Chem 273(19):11630–11637, 1998. 1694. Omerovic J, Laude AJ, Prior IA: Ras proteins: Paradigms for compartmentalised and
1660. Gibbins JM, et al: The p85 subunit of phosphatidylinositol 3-kinase associates with isoform-specific signalling. Cell Mol Life Sci 64(19–20):2575–2589, 2007.
the Fc receptor gamma-chain and linker for activator of T cells (LAT) in platelets 1695. Tulasne D, Bori T, Watson SP: Regulation of RAS in human platelets. Evidence that
stimulated by collagen and convulxin. J Biol Chem 273(51):34437–34443, 1998. activation of RAS is not sufficient to lead to ERK1–2 phosphorylation. Eur J Biochem
1661. Watanabe N, et al: Functional phenotype of phosphoinositide 3-kinase p85alpha- 269(5):1511–1517, 2002.
null platelets characterized by an impaired response to GP VI stimulation. Blood 1696. Shock DD, et al: Ras activation in platelets after stimulation of the thrombin receptor,
102(2):541–548, 2003. thromboxane A2 receptor or protein kinase C. Biochem J 321(Pt 2):525–530, 1997.
1662. Gratacap MP, et al: Phosphatidylinositol 3,4,5-trisphosphate-dependent stimulation 1697. Bauer M, et al: Dichotomous regulation of myosin phosphorylation and shape change
of phospholipase C-gamma2 is an early key event in FcgammaRIIA-mediated activa- by Rho-kinase and calcium in intact human platelets. Blood 94(5):1665–1672, 1999.
tion of human platelets. J Biol Chem 273(38):24314–24321, 1998. 1698. Morii N, et al: A rho gene product in human blood platelets. II. Effects of the ADP-
1663. Canobbio I, Stefanini L, Cipolla L, et al: Genetic evidence for a predominant role of ribosylation by botulinum C3 ADP-ribosyltransferase on platelet aggregation. J Biol
PI3Kbeta catalytic activity in platelets. Blood 114(10):2193–2196, 2009. Chem 267(29):20921–20926, 1992.
1664. Hirsch E, et al: Resistance to thromboembolism in PI3Kgamma-deficient mice. 1699. Nemoto Y, et al: A rho gene product in human blood platelets. I. Identification of the
FASEB J 15(11):2019–2021, 2001. platelet substrate for botulinum C3 ADP-ribosyltransferase as rhoA protein. J Biol
1665. Leevers SJ, Vanhaesebroeck B, Waterfield MD: Signalling through phosphoinositide Chem 267(29):20916–20920, 1992.
3-kinases: The lipids take centre stage. Curr Opin Cell Biol 11(2):219–225, 1999. 1700. Klages B, et al: Activation of G12/G13 results in shape change and Rho/Rho-
1666. Bae YS, et al: Activation of phospholipase C-gamma by phosphatidylinositol 3,4,5- kinase- mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol
trisphosphate. J Biol Chem 273(8):4465–4469, 1998. 144(4):745–754, 1999.
1667. Salim K, et al: Distinct specificity in the recognition of phosphoinositides by the 1701. Leng L, et al: RhoA and the function of platelet integrin alphaIIbbeta3. Blood
pleckstrin homology domains of dynamin and Bruton’s tyrosine kinase. EMBO J 91(11):4206–4215, 1998.
15(22):6241–6250, 1996. 1702. Schwartz M: Rho signalling at a glance. J Cell Sci 117(Pt 23):5457–5458, 2004.
1668. Li Z, et al: Phosphatidylinositol 3-kinase-gamma activates Bruton’s tyrosine kinase in 1703. Akbar H, et al: Genetic and pharmacologic evidence that Rac1 GTPase is involved in
concert with Src family kinases. Proc Natl Acad Sci U S A 94(25):13820–13825, 1997. regulation of platelet secretion and aggregation. J Thromb Haemost 5(8):1747–1755,
1669. Alessi DR, et al: Characterization of a 3-phosphoinositide-dependent protein kinase 2007.
which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269, 1704. McCarty OJ, et al: Rac1 is essential for platelet lamellipodia formation and aggregate
1997. stability under flow. J Biol Chem 280(47):39474–39484, 2005.
1670. Stokoe D, et al: Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation 1705. Pleines I, et al: Rac1 is essential for phospholipase C-gamma2 activation in platelets.
of protein kinase B. Science 277(5325):567–570, 1997. Pflugers Arch 457(5):1173–1185, 2009.
1671. Kroner C, Eybrechts K, Akkerman JW: Dual regulation of platelet protein kinase B. J 1706. Falet H, et al: Normal Arp2/3 complex activation in platelets lacking WASp. Blood
Biol Chem 275(36):27790–27798, 2000. 100(6):2113–2122, 2002.
1672. Li D, August S, Woulfe DS: GSK3beta is a negative regulator of platelet function and 1707. Kooistra MR, Dube N, Bos JL: Rap1: A key regulator in cell-cell junction formation. J
thrombosis. Blood 111(7):3522–3530, 2008. Cell Sci 120(Pt 1):17–22, 2007.
1673. Stojanovic A, et al: A phosphoinositide 3-kinase-AKT-nitric oxide-cGMP signal- 1708. Franke B, Akkerman JW, Bos JL: Rapid Ca2+-mediated activation of Rap1 in human
ing pathway in stimulating platelet secretion and aggregation. J Biol Chem 281(24): platelets. EMBO J 16(2):252–259, 1997.
16333–16339, 2006. 1709. Greco F, et al: Activation of the small GTPase Rap2B in agonist-stimulated human
1674. Zhang W, Colman RW: Thrombin regulates intracellular cyclic AMP concentration in platelets. J Thromb Haemost 2(12):2223–2230, 2004.
human platelets through phosphorylation/activation of phosphodiesterase 3A. Blood 1710. Chrzanowska-Wodnicka M, et al: Rap1b is required for normal platelet function and
110(5):1475–1482, 2007. hemostasis in mice. J Clin Invest 115(3):680–687, 2005.
1675. Woulfe D, et al: Defects in secretion, aggregation, and thrombus formation in platelets 1711. Eto K, et al: Megakaryocytes derived from embryonic stem cells implicate CalDAG-
from mice lacking Akt2. J Clin Invest 113(3):441–450, 2004. GEFI in integrin signaling. Proc Natl Acad Sci U S A 99(20):12819–12824, 2002.
1676. Chen J, De S, Damron DS, et al: Impaired platelet response to thrombin and collagen 1712. Crittenden JR, et al: CalDAG-GEFI integrates signaling for platelet aggregation and
in AKT-1 deficient mice. Blood 104(6):1703–1710, 2004. thrombus formation. Nat Med 10(9):982–986, 2004.
1677. Bao X, et al: Molecular cloning, bacterial expression and properties of Rab31 and 1713. Cifuni SM, Wagner DD, Bergmeier W: CalDAG-GEFI and protein kinase C represent
Rab32. Eur J Biochem 269(1):259–271, 2002. alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets. Blood
1678. Karniguian A, Zahraoui A, Tavitian A: Identification of small GTP-binding rab pro- 112(5):1696–1703, 2008.
teins in human platelets: Thrombin-induced phosphorylation of rab3B, rab6, and rab8 1714. Watanabe N, et al: Mechanisms and consequences of agonist-induced talin recruit-
proteins. Proc Natl Acad Sci U S A 90(16):7647–7651, 1993. ment to platelet integrin alphaIIbbeta3. J Cell Biol 181(7):1211–1222, 2008.
1679. Richards-Smith B, et al: Analyses of proteins involved in vesicular trafficking in plate- 1715. Cullen PJ, Lockyer PJ: Integration of calcium and Ras signalling. Nat Rev Mol Cell Biol
lets of mouse models of Hermansky Pudlak syndrome. Mol Genet Metab 68(1):14–23, 3(5):339–348, 2002.
1999. 1716. Bodemann BO, White MA: Ral GTPases and cancer: Linchpin support of the tum-
1680. Wilson SM, et al: A mutation in Rab27a causes the vesicle transport defects observed origenic platform. Nat Rev Cancer 8(2):133–140, 2008.
in ashen mice. Proc Natl Acad Sci U S A 97(14):7933–7938, 2000. 1717. Mark BL, Jilkina O, Bhullar RP: Association of Ral GTP-binding protein with human
1681. Choi W, Karim ZA, Whiteheart SW: Arf6 plays an early role in platelet activation by platelet dense granules. Biochem Biophys Res Commun 225(1):40–46, 1996.
collagen and convulxin. Blood 107(8):3145–3152, 2006. 1718. Wolthuis RM, et al: Activation of the small GTPase Ral in platelets. Mol Cell Biol
1682. Bishop AL, Hall A: Rho GTPases and their effector proteins. Biochem J 348 Pt 2: 18(5):2486–2491, 1998.
241–255, 2000. 1719. Kawato M, et al: Regulation of platelet dense granule secretion by the Ral GTPase-
1683. Hall A: Rho GTPases and the actin cytoskeleton. Science 279(5350):509–514, 1998. exocyst pathway. J Biol Chem 283(1):166–174, 2008.
1684. Polakis PG, Snyderman R, Evans T: Characterization of G25K, a GTP-binding protein 1720. Zerial M, McBride H: Rab proteins as membrane organizers. Nat Rev Mol Cell Biol
containing a novel putative nucleotide binding domain. Biochem Biophys Res Com- 2(2):107–117, 2001.
mun 160(1):25–32, 1989. 1721. Kuchay SM, Chishti AH: Calpain-mediated regulation of platelet signaling pathways.
1685. Polakis PG, et al: Identification of the ral and rac1 gene products, low molecular Curr Opin Hematol 14(3):249–254, 2007.
mass GTP-binding proteins from human platelets. J Biol Chem 264(28):16383–16389, 1722. Lai KC, Flaumenhaft R: SNARE protein degradation upon platelet activation: Calpain
1989. cleaves SNAP-23. J Cell Physiol 194(2):206–214, 2003.
Kaushansky_chapter 112_p1829-1914.indd 1911 17/09/15 3:30 pm

