Page 1936 - Williams Hematology ( PDFDrive )
P. 1936

1910  Part XII:  Hemostasis and Thrombosis   Chapter 112:  Platelet Morphology, Biochemistry, and Function           1911




                    1654.  Barry WT, et al: Molecular basis of CIB binding to the integrin alpha IIb cytoplasmic     1686.  Schoenwaelder SM, et al: RhoA sustains integrin alpha IIbbeta 3 adhesion contacts
                     domain. J Biol Chem 277(32):28877–28883, 2002.         under high shear. J Biol Chem 277(17):14738–14746, 2002.
                    1655.  Zhang J, et al: Phosphoinositide 3-kinase gamma and p85/phosphoinositide 3-kinase     1687.  Soulet C, et al: Characterisation of Rac activation in thrombin- and collagen-stimu-
                     in platelets. Relative activation by thrombin receptor or beta-phorbol myristate ace-  lated human blood platelets. FEBS Lett 507(3):253–258, 2001.
                     tate and roles in promoting the ligand-binding function of alphaIIbbeta3 integrin. J     1688.  Vidal C, et al: Cdc42/Rac1-dependent activation of the p21-activated kinase (PAK)
                     Biol Chem 271(11):6265–6272, 1996.                     regulates  human  platelet  lamellipodia  spreading:  Implication  of  the  cortical-actin
                    1656.  Rittenhouse  SE,  Phosphoinositide  3-kinase  activation  and  platelet  function.  Blood   binding protein cortactin. Blood 100(13):4462–4469, 2002.
                     88(12):4401–4414, 1996.                              1689.  Moers A, Wettschureck N, Offermanns S: G13-mediated signaling as a potential target
                    1657.  Hartwig JH, et al: D3 phosphoinositides and outside-in integrin signaling by glyco-  for antiplatelet drugs. Drug News Perspect 17(8):493–498, 2004.
                     protein IIb-IIIa mediate platelet actin assembly and filopodial extension induced by     1690.  Soulet C, et al: A differential role of the platelet ADP receptors P2Y1 and P2Y12 in Rac
                     phorbol 12-myristate 13-acetate. J Biol Chem 271(51):32986–32993, 1996.  activation. J Thromb Haemost 3(10):2296–2306, 2005.
                    1658.  Kucera  GL,  Rittenhouse  SE:  Human  platelets  form  3-phosphorylated  phospho-    1691.  Azim AC, et al: Activation of the small GTPases, rac and cdc42, after ligation of the
                     inositides  in response  to  α-thrombin, U46619, or GTPgammaS.  J Biol Chem   platelet PAR-1 receptor. Blood 95(3):959–964, 2000.
                     265:5345–5348, 1990.                                 1692.  Shock DD, et al: Ras activation in platelets after stimulation of the thrombin receptor,
                    1659.  Banfic H, Downes CP, Rittenhouse SE: Biphasic activation of PKBalpha/Akt in plate-  thromboxane A2 receptor or protein kinase C. Biochem J 321 (Pt 2):525–530, 1997.
                     lets. Evidence for stimulation both by phosphatidylinositol 3,4-bisphosphate, pro-    1693.  Omerovic J, et al: Ras isoform abundance and signalling in human cancer cell lines.
                     duced via a novel pathway, and by phosphatidylinositol 3,4,5-trisphosphate. J Biol   Oncogene 27(19):2754–2762, 2008.
                     Chem 273(19):11630–11637, 1998.                      1694.  Omerovic J, Laude AJ, Prior IA: Ras proteins: Paradigms for compartmentalised and
                    1660.  Gibbins JM, et al: The p85 subunit of phosphatidylinositol 3-kinase associates with   isoform-specific signalling. Cell Mol Life Sci 64(19–20):2575–2589, 2007.
                     the Fc receptor gamma-chain and linker for activator of T cells (LAT) in platelets     1695.  Tulasne D, Bori T, Watson SP: Regulation of RAS in human platelets. Evidence that
                     stimulated by collagen and convulxin. J Biol Chem 273(51):34437–34443, 1998.  activation of RAS is not sufficient to lead to ERK1–2 phosphorylation. Eur J Biochem
                    1661.  Watanabe N, et al: Functional phenotype of phosphoinositide 3-kinase p85alpha-   269(5):1511–1517, 2002.
                     null platelets characterized by an impaired response to GP VI stimulation.  Blood     1696.  Shock DD, et al: Ras activation in platelets after stimulation of the thrombin receptor,
                     102(2):541–548, 2003.                                  thromboxane A2 receptor or protein kinase C. Biochem J 321(Pt 2):525–530, 1997.
                    1662.  Gratacap MP, et al: Phosphatidylinositol 3,4,5-trisphosphate-dependent stimulation     1697.  Bauer M, et al: Dichotomous regulation of myosin phosphorylation and shape change
                     of phospholipase C-gamma2 is an early key event in FcgammaRIIA-mediated activa-  by Rho-kinase and calcium in intact human platelets. Blood 94(5):1665–1672, 1999.
                     tion of human platelets. J Biol Chem 273(38):24314–24321, 1998.    1698.  Morii N, et al: A rho gene product in human blood platelets. II. Effects of the ADP-
                    1663.  Canobbio I, Stefanini L, Cipolla L, et al: Genetic evidence for a predominant role of   ribosylation by botulinum C3 ADP-ribosyltransferase on platelet aggregation. J Biol
                     PI3Kbeta catalytic activity in platelets. Blood 114(10):2193–2196, 2009.  Chem 267(29):20921–20926, 1992.
                    1664.  Hirsch E, et al: Resistance to thromboembolism in PI3Kgamma-deficient mice.     1699.  Nemoto Y, et al: A rho gene product in human blood platelets. I. Identification of the
                     FASEB J 15(11):2019–2021, 2001.                        platelet substrate for botulinum C3 ADP-ribosyltransferase as rhoA protein. J Biol
                    1665.  Leevers SJ, Vanhaesebroeck B, Waterfield MD: Signalling through phosphoinositide   Chem 267(29):20916–20920, 1992.
                     3-kinases: The lipids take centre stage. Curr Opin Cell Biol 11(2):219–225, 1999.    1700.  Klages B, et al: Activation of G12/G13 results in shape change and Rho/Rho-
                    1666.  Bae YS, et al: Activation of phospholipase C-gamma by phosphatidylinositol 3,4,5-   kinase- mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol
                     trisphosphate. J Biol Chem 273(8):4465–4469, 1998.     144(4):745–754, 1999.
                    1667.  Salim K, et al: Distinct specificity in the recognition of phosphoinositides by the     1701.  Leng L, et al: RhoA and the function of platelet integrin alphaIIbbeta3.  Blood
                     pleckstrin homology domains of  dynamin  and Bruton’s  tyrosine kinase.  EMBO J   91(11):4206–4215, 1998.
                     15(22):6241–6250, 1996.                              1702.  Schwartz M: Rho signalling at a glance. J Cell Sci 117(Pt 23):5457–5458, 2004.
                    1668.  Li Z, et al: Phosphatidylinositol 3-kinase-gamma activates Bruton’s tyrosine kinase in     1703.  Akbar H, et al: Genetic and pharmacologic evidence that Rac1 GTPase is involved in
                     concert with Src family kinases. Proc Natl Acad Sci U S A 94(25):13820–13825, 1997.  regulation of platelet secretion and aggregation. J Thromb Haemost 5(8):1747–1755,
                    1669.  Alessi DR, et al: Characterization of a 3-phosphoinositide-dependent protein kinase   2007.
                     which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269,     1704.  McCarty OJ, et al: Rac1 is essential for platelet lamellipodia formation and aggregate
                     1997.                                                  stability under flow. J Biol Chem 280(47):39474–39484, 2005.
                    1670.  Stokoe D, et al: Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation     1705.  Pleines I, et al: Rac1 is essential for phospholipase C-gamma2 activation in platelets.
                     of protein kinase B. Science 277(5325):567–570, 1997.  Pflugers Arch 457(5):1173–1185, 2009.
                    1671.  Kroner C, Eybrechts K, Akkerman JW: Dual regulation of platelet protein kinase B. J     1706.  Falet H, et al: Normal Arp2/3 complex activation in platelets lacking WASp. Blood
                     Biol Chem 275(36):27790–27798, 2000.                   100(6):2113–2122, 2002.
                    1672.  Li D, August S, Woulfe DS: GSK3beta is a negative regulator of platelet function and     1707.  Kooistra MR, Dube N, Bos JL: Rap1: A key regulator in cell-cell junction formation. J
                     thrombosis. Blood 111(7):3522–3530, 2008.              Cell Sci 120(Pt 1):17–22, 2007.
                    1673.  Stojanovic A, et al: A phosphoinositide 3-kinase-AKT-nitric oxide-cGMP signal-    1708.  Franke B, Akkerman JW, Bos JL: Rapid Ca2+-mediated activation of Rap1 in human
                     ing pathway in stimulating platelet secretion and aggregation. J Biol Chem 281(24):   platelets. EMBO J 16(2):252–259, 1997.
                     16333–16339, 2006.                                   1709.  Greco F, et al: Activation of the small GTPase Rap2B in agonist-stimulated human
                    1674.  Zhang W, Colman RW: Thrombin regulates intracellular cyclic AMP concentration in   platelets. J Thromb Haemost 2(12):2223–2230, 2004.
                     human platelets through phosphorylation/activation of phosphodiesterase 3A. Blood     1710.  Chrzanowska-Wodnicka M, et al: Rap1b is required for normal platelet function and
                     110(5):1475–1482, 2007.                                hemostasis in mice. J Clin Invest 115(3):680–687, 2005.
                    1675.  Woulfe D, et al: Defects in secretion, aggregation, and thrombus formation in platelets     1711.  Eto K, et al: Megakaryocytes derived from embryonic stem cells implicate CalDAG-
                     from mice lacking Akt2. J Clin Invest 113(3):441–450, 2004.  GEFI in integrin signaling. Proc Natl Acad Sci U S A 99(20):12819–12824, 2002.
                    1676.  Chen J, De S, Damron DS, et al: Impaired platelet response to thrombin and collagen     1712.  Crittenden JR, et al: CalDAG-GEFI integrates signaling for platelet aggregation and
                     in AKT-1 deficient mice. Blood 104(6):1703–1710, 2004.  thrombus formation. Nat Med 10(9):982–986, 2004.
                    1677.  Bao X, et al: Molecular cloning, bacterial expression and properties of Rab31 and     1713.  Cifuni SM, Wagner DD, Bergmeier W: CalDAG-GEFI and protein kinase C represent
                     Rab32. Eur J Biochem 269(1):259–271, 2002.             alternative pathways leading to activation of integrin alphaIIbbeta3 in platelets. Blood
                    1678.  Karniguian A, Zahraoui A, Tavitian A: Identification of small GTP-binding rab pro-  112(5):1696–1703, 2008.
                     teins in human platelets: Thrombin-induced phosphorylation of rab3B, rab6, and rab8     1714.  Watanabe N, et al: Mechanisms and consequences of agonist-induced talin recruit-
                     proteins. Proc Natl Acad Sci U S A 90(16):7647–7651, 1993.  ment to platelet integrin alphaIIbbeta3. J Cell Biol 181(7):1211–1222, 2008.
                    1679.  Richards-Smith B, et al: Analyses of proteins involved in vesicular trafficking in plate-    1715.  Cullen PJ, Lockyer PJ: Integration of calcium and Ras signalling. Nat Rev Mol Cell Biol
                     lets of mouse models of Hermansky Pudlak syndrome. Mol Genet Metab 68(1):14–23,   3(5):339–348, 2002.
                     1999.                                                1716.  Bodemann BO, White MA: Ral GTPases and cancer: Linchpin support of the tum-
                    1680.  Wilson SM, et al: A mutation in Rab27a causes the vesicle transport defects observed   origenic platform. Nat Rev Cancer 8(2):133–140, 2008.
                     in ashen mice. Proc Natl Acad Sci U S A 97(14):7933–7938, 2000.    1717.  Mark BL, Jilkina O, Bhullar RP: Association of Ral GTP-binding protein with human
                    1681.  Choi W, Karim ZA, Whiteheart SW: Arf6 plays an early role in platelet activation by   platelet dense granules. Biochem Biophys Res Commun 225(1):40–46, 1996.
                     collagen and convulxin. Blood 107(8):3145–3152, 2006.    1718.  Wolthuis RM, et al: Activation of the small GTPase Ral in platelets. Mol Cell Biol
                    1682.  Bishop AL, Hall A: Rho GTPases and their effector proteins.  Biochem J 348 Pt 2:   18(5):2486–2491, 1998.
                     241–255, 2000.                                       1719.  Kawato M, et al: Regulation of platelet dense granule secretion by the Ral GTPase-
                    1683.  Hall A: Rho GTPases and the actin cytoskeleton. Science 279(5350):509–514, 1998.  exocyst pathway. J Biol Chem 283(1):166–174, 2008.
                    1684.  Polakis PG, Snyderman R, Evans T: Characterization of G25K, a GTP-binding protein     1720.  Zerial M, McBride H: Rab proteins as membrane organizers. Nat Rev Mol Cell Biol
                     containing a novel putative nucleotide binding domain. Biochem Biophys Res Com-  2(2):107–117, 2001.
                     mun 160(1):25–32, 1989.                              1721.  Kuchay SM, Chishti AH: Calpain-mediated regulation of platelet signaling pathways.
                    1685.  Polakis PG, et al: Identification of the ral and rac1 gene products, low molecular   Curr Opin Hematol 14(3):249–254, 2007.
                     mass GTP-binding proteins from human platelets. J Biol Chem 264(28):16383–16389,       1722.  Lai KC, Flaumenhaft R: SNARE protein degradation upon platelet activation: Calpain
                     1989.                                                  cleaves SNAP-23. J Cell Physiol 194(2):206–214, 2003.







          Kaushansky_chapter 112_p1829-1914.indd   1911                                                                 17/09/15   3:30 pm
   1931   1932   1933   1934   1935   1936   1937   1938   1939   1940   1941