Page 469 - Williams Hematology ( PDFDrive )
P. 469

444            Part V:  Therapeutic Principles                                                                                                                      Chapter 29:  Gene Therapy for Hematologic Diseases             445




               Using ZFN, a DNA (up to 9.6 kb)  can be inserted precisely into a     25.  Zhang L, Thrasher AJ, Gaspar HB: Current progress on gene therapy for primary
                                         60
               selected location of the human genome. There are several known “safe   immunodeficiencies. Gene Ther 20(10):963–969, 2013.
               harbors” in the human genome. For example, the PPP1R12C gene on     26.  Aiuti A, Cattaneo F, Galimberti S, et al: Gene therapy for immunodeficiency due to
                                                                         adenosine deaminase deficiency. N Engl J Med 360(5):447–458, 2009.
               chromosome 19 (AAVS1 locus) is frequently integrated by an AAV and     27.  Candotti F, Shaw KL, Muul L, et al: Gene therapy for adenosine deaminase-deficient
               such an AAV-based integration is not associated with any subsequent   severe combined immune deficiency: Clinical comparison of retroviral vectors and
                                                                         treatment plans. Blood 120(18):3635–3646, 2012.
               pathologic events.  Several genes have been inserted into the AAVS1     28.  Gaspar HB, Cooray S, Gilmour KC, et al: Hematopoietic stem cell gene therapy for
                             61
               site in human cells, including stem cells, using ZFN gene-targeting   adenosine deaminase-deficient severe combined immunodeficiency leads to long-term
               methods. 60,62  The gene correction rate of gene editing is still very low   immunological recovery and metabolic correction. Sci Transl Med 3(97):97ra80, 2011.
                                  63
               (approximately 1 percent).  Fortunately, gene targeting is a fast-growing     29.  Aiuti A, Bacchetta R, Seger R, et al: Gene therapy for primary immunodeficiencies:
                                                                         Part 2. Curr Opin Immunol 24(5):585–591, 2012.
               field. Many new technologies have developed in recent years. The tran-    30.  Ciceri F, Bonini C, Stanghellini MT, et al: Infusion of suicide-gene-engineered donor
                                                    64
               scription activator-like effector nuclease (TALEN)  and the clustered,   lymphocytes  after  family  haploidentical  haemopoietic  stem-cell  transplantation  for
               regularly interspaced, short palindromic repeats (CRISPR)  technology   leukaemia (the TK007 trial): A non-randomised phase I-II study. Lancet Oncol 10(5):
                                                         65
                                                                         489–500, 2009.
               show promise. Both TALEN and CRISPR are much easier and faster     31.  Di Stasi A, Tey SK, Dotti G, et al: Inducible apoptosis as a safety switch for adoptive cell
               to use than the ZFN approach. These new gene-targeted technologies   therapy. N Engl J Med 365(18):1673–1683, 2011.
               together may solve the retroviral insertion mutagenesis safety problems.    32.  Hutter G, Nowak D, Mossner M, et al: Long-term control of HIV by CCR5 Delta32/
                                                                         Delta32 stem-cell transplantation. N Engl J Med 360(7):692–698, 2009.
                                                                        33.  Gaj T, Gersbach CA, Barbas CF 3rd: ZFN, TALEN, and CRISPR/Cas-based methods
               REFERENCES                                                for genome engineering. Trends Biotechnol 31(7):397–405, 2013.
                                                                        34.  Tebas P, Stein D, Tang WW, et al: Gene editing of CCR5 in autologous CD4 T cells of
                 1.  Vollweiler JL, Zielske SP, Reese JS, Gerson SL: Hematopoietic stem cell gene therapy:   persons infected with HIV. N Engl J Med 370(10):901–910, 2014.
                  Progress toward therapeutic targets. Bone Marrow Transplant 32(1):1–7, 2003.    35.  DiGiusto DL, Krishnan A, Li L, et al: RNA-based gene therapy for HIV with lentiviral
                 2.  Howe SJ, Mansour MR, Schwarzwaelder K, et al: Insertional mutagenesis combined   vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related
                  with acquired somatic mutations causes leukemogenesis following gene therapy of   lymphoma. Sci Transl Med 2(36):36ra43, 2010.
                  SCID-X1 patients. J Clin Invest 118(9):3143–3150, 2008.    36.  Chung J, Scherer LJ, Gu A, et al: Optimized lentiviral vectors for HIV gene therapy:
                 3.  Aiuti A, Biasco L, Scaramuzza S, et al: Lentiviral hematopoietic stem cell gene therapy   Multiplexed expression of small RNAs and inclusion of MGMT(P140K) drug resis-
                  in patients with Wiskott-Aldrich syndrome. Science 341(6148):1233151, 2013.  tance gene. Mol Ther 22(5):952–963, 2014.
                 4.  Biffi A, Montini E, Lorioli L, et al: Lentiviral hematopoietic stem cell gene therapy ben-    37.  Drakopoulou E, Papanikolaou E, Anagnou NP: The ongoing challenge of hematopoietic
                  efits metachromatic leukodystrophy. Science 341(6148):1233158, 2013.  stem cell-based gene therapy for beta-thalassemia. Stem Cells Int 2011:987–980, 2011.
                 5.  Grez M, Reichenbach J, Schwable J, et al: Gene therapy of chronic granulomatous dis-    38.  Neff T, Beard BC, Kiem HP: Survival of the fittest: In vivo selection and stem cell gene
                  ease: The engraftment dilemma. Mol Ther 19(1):28–35, 2011.  therapy. Blood 107(5):1751–1760, 2006.
                 6.  Cartier  N,  Hacein-Bey-Abina  S, Bartholomae  CC,  et  al:  Hematopoietic  stem cell     39.  Cavazzana-Calvo M, Payen E, Negre O, et al: Transfusion independence and HMGA2
                  gene  therapy  with  a  lentiviral  vector  in  X-linked  adrenoleukodystrophy.  Science   activation after gene therapy of human beta-thalassaemia. Nature 467(7313):318–322,
                  326(5954):818–823, 2009.                               2010.
                 7.  Gattinoni L, Restifo NP: Moving T memory stem cells to the clinic. Blood 121:567–568,     40.  Nienhuis AW: Development of gene therapy for blood disorders: An update. Blood
                  2013.                                                  122(9):1556–1564, 2013.
                 8.  Kalos M, Levine BL, Porter DL, et al: T cells with chimeric antigen receptors have     41.  Pierce GF, Lillicrap D, Pipe SW, Vandendriessche T: Gene therapy, bioengineered
                  potent antitumor effects and can establish memory in patients with advanced leukemia.   clotting factors and novel technologies for hemophilia treatment. J Thromb Haemost
                  Sci Transl Med 3(95):95ra73, 2011.                     5(5):901–906, 2007.
                 9.  Porter DL, Levine BL, Kalos M, et al: Chimeric antigen receptor-modified T cells in     42.  Lenting PJ, van Mourik JA, Mertens K: The life cycle of coagulation factor VIII in view
                  chronic lymphoid leukemia. N Engl J Med 365(8):725–733, 2011.  of its structure and function. Blood 92(11):3983–3996, 1998.
                 10.  Savkovic B, Nichols J, Birkett D, et al: A quantitative comparison of anti-HIV gene     43.  Cancio MI, Reiss UM, Nathwani AC, et al: Developments in the treatment of hemo-
                  therapy delivered to hematopoietic stem cells versus CD4+ T cells. PLoS Comput Biol   philia B: Focus on emerging gene therapy. Appl Clin Genet 6:91–101, 2013.
                  10(6):e1003681, 2014.                                 44.  Penaud-Budloo M, Le Guiner C, Nowrouzi A, et al: Adeno-associated virus vector
                 11.  McLean AR, Michie CA: In vivo estimates of division and death rates of human T lym-  genomes persist as episomal chromatin in primate muscle. J Virol 82(16):7875–7885,
                  phocytes. Proc Natl Acad Sci U S A 92(9):3707–3711, 2014.  2008.
                 12.  Kamen A, Henry O: Development and optimization of an adenovirus production pro-    45.  Nathwani AC, Reiss UM, Tuddenham EG, et al: Long-term safety and efficacy of
                  cess. J Gene Med 6 Suppl 1:S184–S192, 2004.            factor IX gene therapy in hemophilia B. N Engl J Med 371(21):1994–2004, 2014.
                 13.  Puntel M, A K M GM, Farrokhi C, et al: Safety profile, efficacy, and biodistribution of     46.  McIntosh J, Lenting PJ, Rosales C, et al: Therapeutic levels of FVIII following a single
                  a bicistronic high-capacity adenovirus vector encoding a combined immunostimula-  peripheral vein administration of rAAV vector encoding a novel human factor VIII
                  tion and cytotoxic gene therapy as a prelude to a phase I clinical trial for glioblastoma.    variant. Blood 121(17):3335–3344, 2013.
                  Toxicol Appl Pharmacol 268(3):318–330, 2013.          47.  D’Andrea AD: Susceptibility pathways in Fanconi’s anemia and breast cancer. N Engl J
                 14.  Ahi YS, Bangari DS, Mittal SK: Adenoviral vector immunity: Its implications and cir-  Med 362(20):1909–1919, 2010.
                  cumvention strategies. Curr Gene Ther 11(4):307–320, 2011.    48.  Mankad A, Taniguchi T, Cox B, et al: Natural gene therapy in monozygotic twins with
                 15.  Alemany R: Chapter four—Design of improved oncolytic adenoviruses. Adv Cancer Res   Fanconi anemia. Blood 107(8):3084–3090, 2006.
                  115:93–114, 2012.                                     49.  Tolar J, Becker PS, Clapp DW, et al: Gene therapy for Fanconi anemia: One step closer
                 16.  Nathwani AC, Tuddenham EG, Rangarajan S, et al: Adenovirus-associated virus     to the clinic. Hum Gene Ther 23(2):141–144, 2012.
                  vector-mediated gene transfer in hemophilia B. N Engl J Med 365(25):2357–2365, 2011.    50.  Watts KL, Delaney C, Humphries RK, et al: Combination of HOXB4 and Delta-1 ligand
                 17.  Xiao PJ, Lentz TB, Samulski RJ: Recombinant adeno-associated virus: Clinical applica-  improves expansion of cord blood cells. Blood 116(26):5859–5866, 2010.
                  tion and development as a gene-therapy vector. Ther Deliv 3(7):835–856, 2012.    51.  Lattime EC, Gerson SL: Gene Therapy of Cancer: Translational Approaches from Preclin-
                 18.  Daya S, Berns KI: Gene therapy using adeno-associated virus vectors. Clin Microbiol   ical Studies to Clinical Implementation, ed 3. Academic Press, San Diego, CA, 2014.
                  Rev 21(4):583–593, 2008.                              52.  Adair JE, Beard BC, Trobridge GD, et al: Extended survival of glioblastoma patients
                 19.  Raj D, Davidoff AM, Nathwani AC: Self-complementary adeno-associated viral vec-  after chemoprotective HSC gene therapy. Sci Transl Med 4(133):133ra57, 2012.
                  tors for gene therapy of hemophilia B: Progress and challenges. Expert Rev Hematol     53.  Adair JE, Johnston SK, Mrugala MM, et al: Gene therapy enhances chemotherapy tol-
                  4(5):539–549, 2011.                                    erance and efficacy in glioblastoma patients. J Clin Invest 124(9):4082–4092, 2014.
                 20.  Cooray S, Howe SJ, Thrasher AJ: Retrovirus and lentivirus vector design and methods     54.  Zielske SP, Gerson SL: Lentiviral transduction of P140K MGMT into human CD34(+)
                  of cell conditioning. Methods Enzymol 507:29–57, 2012.  hematopoietic progenitors at low multiplicity of infection confers significant resistance
                 21.  Naldini L, Blomer U, Gage FH, et al: Efficient transfer, integration, and sustained long-  to BG/BCNU and allows selection in vitro. Mol Ther 5(4):381–387, 2002.
                  term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc     55.  Davis BM, Roth JC, Liu L, et al: Characterization of the P140K, PVP(138–140)MLK,
                  Natl Acad Sci U S A 93(21):11382–11388, 1996.          and G156A O6-methylguanine-DNA methyltransferase mutants: Implications for drug
                 22.  Cattoglio C, Pellin D, Rizzi E, et al: High-definition mapping of retroviral integration   resistance gene therapy. Hum Gene Ther 10(17):2769–2778, 1999.
                  sites identifies active regulatory elements in human multipotent hematopoietic progen-    56.  Knight S, Zhang F, Mueller-Kuller U, et al: Safer, silencing-resistant lentiviral vectors:
                  itors. Blood 116(25):5507–5517, 2010.                  Optimization of the ubiquitous chromatin-opening element through elimination of
                 23.  Cavazzana-Calvo M, Fischer A, Hacein-Bey-Abina S, Aiuti A: Gene therapy for pri-  aberrant splicing. J Virol 86(17):9088–9095, 2012.
                  mary immunodeficiencies: Part 1. Curr Opin Immunol 24(5):580–584, 2012.    57.  Deichmann A, Brugman MH, Bartholomae CC, et al: Insertion sites in engrafted cells
                 24.  Hacein-Bey-Abina S, Hauer J, Lim A, et al: Efficacy of gene therapy for X-linked severe   cluster within a limited repertoire of genomic areas after gammaretroviral vector gene
                  combined immunodeficiency. N Engl J Med 363(4):355–364, 2010.  therapy. Mol Ther 19(11):2031–2039, 2011.






          Kaushansky_chapter 29_p0437-0446.indd   444                                                                   9/19/15   12:22 AM
   464   465   466   467   468   469   470   471   472   473   474