Page 469 - Williams Hematology ( PDFDrive )
P. 469
444 Part V: Therapeutic Principles Chapter 29: Gene Therapy for Hematologic Diseases 445
Using ZFN, a DNA (up to 9.6 kb) can be inserted precisely into a 25. Zhang L, Thrasher AJ, Gaspar HB: Current progress on gene therapy for primary
60
selected location of the human genome. There are several known “safe immunodeficiencies. Gene Ther 20(10):963–969, 2013.
harbors” in the human genome. For example, the PPP1R12C gene on 26. Aiuti A, Cattaneo F, Galimberti S, et al: Gene therapy for immunodeficiency due to
adenosine deaminase deficiency. N Engl J Med 360(5):447–458, 2009.
chromosome 19 (AAVS1 locus) is frequently integrated by an AAV and 27. Candotti F, Shaw KL, Muul L, et al: Gene therapy for adenosine deaminase-deficient
such an AAV-based integration is not associated with any subsequent severe combined immune deficiency: Clinical comparison of retroviral vectors and
treatment plans. Blood 120(18):3635–3646, 2012.
pathologic events. Several genes have been inserted into the AAVS1 28. Gaspar HB, Cooray S, Gilmour KC, et al: Hematopoietic stem cell gene therapy for
61
site in human cells, including stem cells, using ZFN gene-targeting adenosine deaminase-deficient severe combined immunodeficiency leads to long-term
methods. 60,62 The gene correction rate of gene editing is still very low immunological recovery and metabolic correction. Sci Transl Med 3(97):97ra80, 2011.
63
(approximately 1 percent). Fortunately, gene targeting is a fast-growing 29. Aiuti A, Bacchetta R, Seger R, et al: Gene therapy for primary immunodeficiencies:
Part 2. Curr Opin Immunol 24(5):585–591, 2012.
field. Many new technologies have developed in recent years. The tran- 30. Ciceri F, Bonini C, Stanghellini MT, et al: Infusion of suicide-gene-engineered donor
64
scription activator-like effector nuclease (TALEN) and the clustered, lymphocytes after family haploidentical haemopoietic stem-cell transplantation for
regularly interspaced, short palindromic repeats (CRISPR) technology leukaemia (the TK007 trial): A non-randomised phase I-II study. Lancet Oncol 10(5):
65
489–500, 2009.
show promise. Both TALEN and CRISPR are much easier and faster 31. Di Stasi A, Tey SK, Dotti G, et al: Inducible apoptosis as a safety switch for adoptive cell
to use than the ZFN approach. These new gene-targeted technologies therapy. N Engl J Med 365(18):1673–1683, 2011.
together may solve the retroviral insertion mutagenesis safety problems. 32. Hutter G, Nowak D, Mossner M, et al: Long-term control of HIV by CCR5 Delta32/
Delta32 stem-cell transplantation. N Engl J Med 360(7):692–698, 2009.
33. Gaj T, Gersbach CA, Barbas CF 3rd: ZFN, TALEN, and CRISPR/Cas-based methods
REFERENCES for genome engineering. Trends Biotechnol 31(7):397–405, 2013.
34. Tebas P, Stein D, Tang WW, et al: Gene editing of CCR5 in autologous CD4 T cells of
1. Vollweiler JL, Zielske SP, Reese JS, Gerson SL: Hematopoietic stem cell gene therapy: persons infected with HIV. N Engl J Med 370(10):901–910, 2014.
Progress toward therapeutic targets. Bone Marrow Transplant 32(1):1–7, 2003. 35. DiGiusto DL, Krishnan A, Li L, et al: RNA-based gene therapy for HIV with lentiviral
2. Howe SJ, Mansour MR, Schwarzwaelder K, et al: Insertional mutagenesis combined vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related
with acquired somatic mutations causes leukemogenesis following gene therapy of lymphoma. Sci Transl Med 2(36):36ra43, 2010.
SCID-X1 patients. J Clin Invest 118(9):3143–3150, 2008. 36. Chung J, Scherer LJ, Gu A, et al: Optimized lentiviral vectors for HIV gene therapy:
3. Aiuti A, Biasco L, Scaramuzza S, et al: Lentiviral hematopoietic stem cell gene therapy Multiplexed expression of small RNAs and inclusion of MGMT(P140K) drug resis-
in patients with Wiskott-Aldrich syndrome. Science 341(6148):1233151, 2013. tance gene. Mol Ther 22(5):952–963, 2014.
4. Biffi A, Montini E, Lorioli L, et al: Lentiviral hematopoietic stem cell gene therapy ben- 37. Drakopoulou E, Papanikolaou E, Anagnou NP: The ongoing challenge of hematopoietic
efits metachromatic leukodystrophy. Science 341(6148):1233158, 2013. stem cell-based gene therapy for beta-thalassemia. Stem Cells Int 2011:987–980, 2011.
5. Grez M, Reichenbach J, Schwable J, et al: Gene therapy of chronic granulomatous dis- 38. Neff T, Beard BC, Kiem HP: Survival of the fittest: In vivo selection and stem cell gene
ease: The engraftment dilemma. Mol Ther 19(1):28–35, 2011. therapy. Blood 107(5):1751–1760, 2006.
6. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, et al: Hematopoietic stem cell 39. Cavazzana-Calvo M, Payen E, Negre O, et al: Transfusion independence and HMGA2
gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science activation after gene therapy of human beta-thalassaemia. Nature 467(7313):318–322,
326(5954):818–823, 2009. 2010.
7. Gattinoni L, Restifo NP: Moving T memory stem cells to the clinic. Blood 121:567–568, 40. Nienhuis AW: Development of gene therapy for blood disorders: An update. Blood
2013. 122(9):1556–1564, 2013.
8. Kalos M, Levine BL, Porter DL, et al: T cells with chimeric antigen receptors have 41. Pierce GF, Lillicrap D, Pipe SW, Vandendriessche T: Gene therapy, bioengineered
potent antitumor effects and can establish memory in patients with advanced leukemia. clotting factors and novel technologies for hemophilia treatment. J Thromb Haemost
Sci Transl Med 3(95):95ra73, 2011. 5(5):901–906, 2007.
9. Porter DL, Levine BL, Kalos M, et al: Chimeric antigen receptor-modified T cells in 42. Lenting PJ, van Mourik JA, Mertens K: The life cycle of coagulation factor VIII in view
chronic lymphoid leukemia. N Engl J Med 365(8):725–733, 2011. of its structure and function. Blood 92(11):3983–3996, 1998.
10. Savkovic B, Nichols J, Birkett D, et al: A quantitative comparison of anti-HIV gene 43. Cancio MI, Reiss UM, Nathwani AC, et al: Developments in the treatment of hemo-
therapy delivered to hematopoietic stem cells versus CD4+ T cells. PLoS Comput Biol philia B: Focus on emerging gene therapy. Appl Clin Genet 6:91–101, 2013.
10(6):e1003681, 2014. 44. Penaud-Budloo M, Le Guiner C, Nowrouzi A, et al: Adeno-associated virus vector
11. McLean AR, Michie CA: In vivo estimates of division and death rates of human T lym- genomes persist as episomal chromatin in primate muscle. J Virol 82(16):7875–7885,
phocytes. Proc Natl Acad Sci U S A 92(9):3707–3711, 2014. 2008.
12. Kamen A, Henry O: Development and optimization of an adenovirus production pro- 45. Nathwani AC, Reiss UM, Tuddenham EG, et al: Long-term safety and efficacy of
cess. J Gene Med 6 Suppl 1:S184–S192, 2004. factor IX gene therapy in hemophilia B. N Engl J Med 371(21):1994–2004, 2014.
13. Puntel M, A K M GM, Farrokhi C, et al: Safety profile, efficacy, and biodistribution of 46. McIntosh J, Lenting PJ, Rosales C, et al: Therapeutic levels of FVIII following a single
a bicistronic high-capacity adenovirus vector encoding a combined immunostimula- peripheral vein administration of rAAV vector encoding a novel human factor VIII
tion and cytotoxic gene therapy as a prelude to a phase I clinical trial for glioblastoma. variant. Blood 121(17):3335–3344, 2013.
Toxicol Appl Pharmacol 268(3):318–330, 2013. 47. D’Andrea AD: Susceptibility pathways in Fanconi’s anemia and breast cancer. N Engl J
14. Ahi YS, Bangari DS, Mittal SK: Adenoviral vector immunity: Its implications and cir- Med 362(20):1909–1919, 2010.
cumvention strategies. Curr Gene Ther 11(4):307–320, 2011. 48. Mankad A, Taniguchi T, Cox B, et al: Natural gene therapy in monozygotic twins with
15. Alemany R: Chapter four—Design of improved oncolytic adenoviruses. Adv Cancer Res Fanconi anemia. Blood 107(8):3084–3090, 2006.
115:93–114, 2012. 49. Tolar J, Becker PS, Clapp DW, et al: Gene therapy for Fanconi anemia: One step closer
16. Nathwani AC, Tuddenham EG, Rangarajan S, et al: Adenovirus-associated virus to the clinic. Hum Gene Ther 23(2):141–144, 2012.
vector-mediated gene transfer in hemophilia B. N Engl J Med 365(25):2357–2365, 2011. 50. Watts KL, Delaney C, Humphries RK, et al: Combination of HOXB4 and Delta-1 ligand
17. Xiao PJ, Lentz TB, Samulski RJ: Recombinant adeno-associated virus: Clinical applica- improves expansion of cord blood cells. Blood 116(26):5859–5866, 2010.
tion and development as a gene-therapy vector. Ther Deliv 3(7):835–856, 2012. 51. Lattime EC, Gerson SL: Gene Therapy of Cancer: Translational Approaches from Preclin-
18. Daya S, Berns KI: Gene therapy using adeno-associated virus vectors. Clin Microbiol ical Studies to Clinical Implementation, ed 3. Academic Press, San Diego, CA, 2014.
Rev 21(4):583–593, 2008. 52. Adair JE, Beard BC, Trobridge GD, et al: Extended survival of glioblastoma patients
19. Raj D, Davidoff AM, Nathwani AC: Self-complementary adeno-associated viral vec- after chemoprotective HSC gene therapy. Sci Transl Med 4(133):133ra57, 2012.
tors for gene therapy of hemophilia B: Progress and challenges. Expert Rev Hematol 53. Adair JE, Johnston SK, Mrugala MM, et al: Gene therapy enhances chemotherapy tol-
4(5):539–549, 2011. erance and efficacy in glioblastoma patients. J Clin Invest 124(9):4082–4092, 2014.
20. Cooray S, Howe SJ, Thrasher AJ: Retrovirus and lentivirus vector design and methods 54. Zielske SP, Gerson SL: Lentiviral transduction of P140K MGMT into human CD34(+)
of cell conditioning. Methods Enzymol 507:29–57, 2012. hematopoietic progenitors at low multiplicity of infection confers significant resistance
21. Naldini L, Blomer U, Gage FH, et al: Efficient transfer, integration, and sustained long- to BG/BCNU and allows selection in vitro. Mol Ther 5(4):381–387, 2002.
term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc 55. Davis BM, Roth JC, Liu L, et al: Characterization of the P140K, PVP(138–140)MLK,
Natl Acad Sci U S A 93(21):11382–11388, 1996. and G156A O6-methylguanine-DNA methyltransferase mutants: Implications for drug
22. Cattoglio C, Pellin D, Rizzi E, et al: High-definition mapping of retroviral integration resistance gene therapy. Hum Gene Ther 10(17):2769–2778, 1999.
sites identifies active regulatory elements in human multipotent hematopoietic progen- 56. Knight S, Zhang F, Mueller-Kuller U, et al: Safer, silencing-resistant lentiviral vectors:
itors. Blood 116(25):5507–5517, 2010. Optimization of the ubiquitous chromatin-opening element through elimination of
23. Cavazzana-Calvo M, Fischer A, Hacein-Bey-Abina S, Aiuti A: Gene therapy for pri- aberrant splicing. J Virol 86(17):9088–9095, 2012.
mary immunodeficiencies: Part 1. Curr Opin Immunol 24(5):580–584, 2012. 57. Deichmann A, Brugman MH, Bartholomae CC, et al: Insertion sites in engrafted cells
24. Hacein-Bey-Abina S, Hauer J, Lim A, et al: Efficacy of gene therapy for X-linked severe cluster within a limited repertoire of genomic areas after gammaretroviral vector gene
combined immunodeficiency. N Engl J Med 363(4):355–364, 2010. therapy. Mol Ther 19(11):2031–2039, 2011.
Kaushansky_chapter 29_p0437-0446.indd 444 9/19/15 12:22 AM

