Page 31 - PRE-U STPM MATHEMATICS (T) TERM 1
P. 31

Mathematics Term 1  STPM  Chapter 2 Sequences and Series

                 Example 28


              Find the r  term, u  , of the series 2 · 1! + 5 · 2! + 10 · 3! + 17 · 4! +  …  + (n  + 1) · n!
                                                                           2
                       th
                              r
              By expressing u  as the difference of two functions of r, find the sum of the above series.
                           r
              Solution:           For the series
                                  2 · 1! + 5 · 2! + 10 · 3! + 17 · 4! +  …  + (n  + 1) · n!,
                                                                      2
                                      th
                                                   2
                                  the r  term, u   = (r  + 1) · r!
                                              r
                                                = [r(r + 1) – (r – 1)] · r!
         2                                      = r(r + 1)r! – (r – 1) · r!
                                                = r(r + 1)! – (r – 1)r!   (r + 1)r ! = (r + 1)!


                                  Let f(r) = r(r + 1)! and f(r – 1) = (r – 1)r!
                                  Then       u   = f(r) – f(r – 1)
                                              r
                                           n      n
                                  and      ∑ u   =  ∑ [f(r) – f(r – 1)]
                                          r = 1  r  r = 1
                                                = f(n) – f(0)
                                                = n(n + 1)! – 0
                                      n
                                         2
                                  ∴  ∑ (r  + 1) r! = n(n + 1)!
                                     r = 1

                 Exercise 2.5


               1.  Evaluate
                       4                           12                           8
                 (a)   ∑ (r  + 3r)            (b)  ∑ (100 – r )            (c)  ∑ (4r + 5)
                                                             2
                          3
                      r = 1                       r = 10                       r = 3
                       5  90                       8     rπ                     5
                                                                                     r
                 (d)  ∑                       (e)  ∑  sin                  (f)  ∑ (–1) (1 + 2 r + 1 )
                      r = 1 r                     r = 1  3                     r = 0
                                    n   n        n                  n
                                           2
                                                    3
               2.  Using the results for  ∑  r,  ∑  r  and  ∑  r , find the value of  ∑  u  for each of the following cases.
                                   r = 1  r = 1  r = 1              r = 1  r
                                                                      2
                           3
                 (a)  u  = 2r  – r + 1                       (b)  u  = r (r + 2)
                       r
                                                                  r
                 (c)  u  = (r + 2)(r + 3)(2r – 1)            (d)  u  = (r + 1)(r + 3)(r + 5)
                                                                  r
                       r
               3.  For each of the following series, write down its r  term. Hence, find the sum up to the n  term.
                                                                                           th
                                                          th
                 (a)  1 · 4 + 2 · 7 + 3 · 10 +  …            (b)  1  · 5 + 2  · 6 + 3  · 7 +  …
                                                                               2
                                                                  2
                                                                         2
                 (c)  1 · 3 + 2 · 4 + 3 · 5 +  …             (d)  1 · 4 · 7 + 4 · 7 · 10 + 7 · 10 · 13 +  …
                 (e)     1    +   1     +   1    +  …        (f)  1 · 2 · 3 + 2 · 3 · 4 + 3 · 4 · 5 +  …
                      1 · 2 · 3  2 · 3 · 4  3 · 4 · 5
                                2
                            2
                                            2
                                    2
               4.  Given that 1  + 2  + 3  +  …  + n  =   1   n(n + 1)(2n + 1), find the sum of the series
                                                6
                                                        2
                                                            2
                                                    2
                                                   2  + 4  + 6  +  …  + 50 2
                 Using the above result, find the value of
                                                                     2
                                                   2
                                                        2
                                                            2
                                                  1  + 3  + 5  +   …  + 49 .
                                            3
                            3
                                    3
                                3
               5.  Given that 1  + 2  + 3  +  …  + n  =   1  n (n + 1) , find the sum of the first twenty terms of the series
                                                   2
                                                         2
                                                4
                                                2 + 16 + 54 + 128 + 250 +  …
             118
       02 STPM Math T T1.indd   118                                                                    3/28/18   4:21 PM
   26   27   28   29   30   31   32   33   34   35   36