Page 30 - PRE-U STPM MATHEMATICS (T) TERM 1
P. 30

Mathematics Term 1  STPM  Chapter 2 Sequences and Series

                                           n            n
                                           ∑    1     =  ∑  1  1  –   1  2
                                          r = 1 r(r + 1)  r = 1 r  r + 1
                                                         n
                                                      = – ∑ 1  1   –   1 2
                                                        r = 1 r + 1  r
                                    Let           f(r)  =   1   , f(r – 1) =   1
                                                       r + 1          r
                                           n             n
                                    Thus   ∑    1     = – ∑ [f(r) – f(r – 1)]
                                          r = 1 r(r + 1)  r = 1
                                                      = –[f(n) – f(0)]
                                                           1
                                                      = –  1 n + 1  – 1 2                                   2

                                                      = 1 –   1
                                                           n + 1
                                                      =   n
                                                       n + 1



                   Example 27


                 Show that     1      –    1    = –      2       .
                          (r + 1)(r + 2)  r(r + 1)  r(r + 1)(r + 2)

                                                 n
                 Using the method of differences, find  ∑     1   .
                                                r = 1 r(r + 1)(r + 2)

                Solution:                 1       –   1     =   r – (r + 2)
                                     (r + 1)(r + 2)  r(r + 1)  r(r + 1)(r + 2)
                                                            = –     2
                                                               r(r + 1)(r + 2)

                                                               1
                                    Thus           1        = –    3  1       –   1   4
                                              r(r + 1)(r + 2)  2 (r + 1)(r + 2)  r(r + 1)
                                                                        1
                                                  1
                                    Let  u  =   r(r + 1)(r + 2)  and f(r) =   (r + 1)(r + 2) .
                                         r
                                                               1
                                                      ∴  u  = –   [f(r) – f(r – 1)].
                                                          r
                                                               2
                                                       n         n
                                                               1
                                    and                ∑ u  = –    ∑ [f(r) – f(r – 1)]
                                                       r = 1  r  2 r = 1
                                                               1
                                                            = –   [f(n) – f(0)]
                                                               2
                                                               1
                                                            = –    3   1      –   1 4
                                                               2 (n + 1)(n + 2)  2
                                            n
                                                               3

                                           ∑        1       =   1 1  –   1      4 .
                                           r = 1 r(r + 1)(r + 2)  2 2  (n + 1)(n + 2)


                                                                                                      117





       02 STPM Math T T1.indd   117                                                                    3/28/18   4:21 PM
   25   26   27   28   29   30   31   32   33   34   35