Page 26 - PRE-U STPM MATHEMATICS (T) TERM 1
P. 26

Mathematics Term 1  STPM  Chapter 2 Sequences and Series

                                                 2
                                 =   1   (n + 1)[2(n + 1)  – 2 – 3n]
                                  2
                                            2
                                 =   1  (n + 1)(2n  + 4n + 2 – 2 – 3n)
                                  2
                                            2
                                 =   1  (n + 1)(2n  + n)
                                  2
                                 =   1  n(n + 1)(2n + 1)
                                  2
                            n
                              2
               Thus        ∑ r   =   1  n(n + 1)(2n + 1)
                           r = 1  6
               Similarly, by using the identity
                                   3
                              4
                          4
                                        2
                     (r + 1)  – r   = 4r  + 6r + 4r + 1,                                                    2
                            n     1
               we get      ∑ r   =    n (n + 1) 2
                              3
                                     2
                           r = 1  4
                                 =  3 1 2   n(n + 1) 4 2
                                   n  2
                                 1
                                 =  ∑ r 2
                                  r = 1
                                     Sum of the first n positive integers is
                                                n    1
                                                ∑ r =    n(n + 1).
                                               r = 1  2
                                     Sum of the squares of the first n positive integers is
                                                n
                                                ∑ r  =   1  n(n + 1)(2n + 1)
                                                  2
                                               r = 1  6
                                     Sum of the cubes of the first n positive integers is
                                                n     1
                                                        2
                                                  3
                                                               2
                                                ∑ r  =   n (n + 1) .
                                               r = 1  4
                   Example 22
                 Evaluate
                     100                           50                           25
                (a)   ∑  r                    (b)  ∑  r 2                  (c)  ∑  r 3
                     r = 1                        r = 1                        r = 1
                Solution:           (a)  By using
                                                n     1
                                                ∑  r =    n(n + 1)
                                               r = 1  2
                                         and substituting n = 100,
                                                100   1
                                                ∑  r =    (100)(101)
                                               r = 1  2
                                                    = 5050
                                    (b)  By using
                                                n     1
                                                  2
                                               ∑  r   =    n(n + 1)(2n + 1)
                                               r = 1  6
                                         and substituting n = 50,
                                               50     1
                                               ∑  r  =   (50)(51)(101)
                                                  2
                                               r = 1  6
                                                    = 42 925


                                                                                                      113





       02 STPM Math T T1.indd   113                                                                    3/28/18   4:21 PM
   21   22   23   24   25   26   27   28   29   30   31