Page 20 - TOP CLASS MATHS T5 KSSM
P. 20

Mathematics  Form 5  Chapter 7  Measures of Dispersion for Grouped Data

         11.  For each of the following distributions, calculate the variance and standard deviation.  PL 4
             Bagi setiap taburan berikut, hitung varians dan sisihan piawai.

                Example

               Length (mm)         4.0 – 6.9       7.0 – 9.9     10.0 – 12.9     13.0 – 15.9    16.0 – 18.9
               Panjang (mm)
               Frequency
               Kekerapan               5              8              11              10              6

                  Length (mm)        Frequency, f       Midpoint, x            fx                fx 2
                   Panjang (mm)        Kekerapan, f      Titik tengah, x
                    4.0 – 6.9              5                5.45             27.25            148.5125
                    7.0 – 9.9              8                8.45              67.6             571.22
                   10.0 – 12.9            11                11.45            125.95          1 442.1275
                   13.0 – 15.9            10                14.45            144.5            2 088.025
                   16.0 – 18.9             6                17.45            104.7            1 827.015
                                        Σf = 40                            Σfx = 470        Σfx  = 6 076.9
                                                                                              2
                                   Σfx 2
              Variance / Varians, σ  =    – x
                                2
                                         –2
                                    Σf
                                   Σfx 2  Σfx  2                        Variance and standard deviation are
                                 =      –                             always positive.
                                    Σf     Σf                           Varians dan sisihan piawai adalah
                                   6 076.9   470  2                     sentiasa positif.
                                 =         –   
                                      40      40
                                 = 13.86 mm 2
                                                                               ariance
                                                                              V
                                                   Σfx
                                                      2
              Standard deviation / Sisihan piawai, σ =        Standard deviation = 
                                                         –2
                                                       – x
                                                                Sisihan piawai = Varians
                                                    Σf
                                               = 
                                                  13.86
                                               = 3.723 mm
              (a)  Number of tiles
                   Bilangan jubin          20 – 39       40 – 59       60 – 79       80 – 99     100 – 119
                   Frequency                  3             6            10            7             4
                   Kekerapan
                    Number of tiles     Frequency, f     Midpoint, x                               2
                       Bilangan jubin     Kekerapan, f    Titik tengah, x      fx                fx
                         20 – 39              3              29.5             88.5            2 610.75
                         40 – 59              6              49.5             297             14 701.5
                         60 – 79             10              69.5             695             48 302.5
                         80 – 99              7              89.5            626.5            56 071.75
                        100 – 119             4              109.5            438              47 961
                                           Σf = 30                        Σfx = 2 145      Σfx  = 169 647.5
                                                                                             2
                                       Σfx 2  Σfx  2
                                   2
                  Variance / Varians, σ  =    –   
                                        Σf    Σf
                                       169 647.5   2 145  2
                                     =           –      
                                          30         30
                                     = 542.6666667
                                     = 542.667

                  Standard deviation / Sisihan piawai, σ = 542.6666667
                                                   = 23.295





        © Penerbitan Pelangi Sdn. Bhd.                    14
   15   16   17   18   19   20   21   22   23   24   25