Page 26 - Ranger SPM 2022 - Additional Mathematics
P. 26

CHAPTER   2                         DIFFERENTIATION                      Form 5
                                                    Additional Mathematics  SPM  Chapter 2 Differentiation






             Penerbitan Pelangi Sdn Bhd. All Rights Reserved.
                                               Learning Area: Calculus




                                              CONCEPT MAP







                                              Differentiation




                                      First principles
                                 dy   lim  δy                    Application of differentiation
                                 dx   =  δx : 0 δx           (a)  If it is given a curve y = f(x),
                                      lim
                                    =  δx : 0  f(x + δx) – f(x)  then
                                                                 (i)  Equation of tangent at a point
                                                δx
                                                                    (x 1 , y 1 )   dy
                             First derivative                       y - y 1  =  dx  (x - x 1 )
                                     dy                          (ii)  Equation of normal at a point
                   (i)  If y = ax , then  dx  = anx n – 1           (x 1 , y 1 )
                               n
                        d                                                    1
                   (ii)   dx [f(x) ± g(x)]                          y - y 1  = –   dy   (x - x 1 )
                         d
                                   d
                                                                             dx
                       =  dx [f(x)] ±  dx [g(x)]             (b)  Turning point is a maximum point
                                                                             2
                   (iii)  Chain rule                             dy  = 0 and  d y 2   0
                                                                 dx
                                                                            dx
                       dy  =  dy  ×  du                      (c)  Turning point is a minimum point
                       dx
                            du
                                 dx
                                                                             2
                   (iv)  Multiplication rule                     dy         d y
                        d       dv    du                         dx  = 0 and   dx 2   0
                       dx (uv) = u dx  + v dx                (d)  Point of inflection
                                                                             2
                   (v)  Quotient rule  dv                        dy  = 0 and  d y 2  = 0              Form 5
                                 du
                                                                 dx
                                                                            dx
                        d u    v dx  – u dx                  (e)  Small change and approximation
                          ( ) =
                       dx v        v 2                                dy
                                                                 δy   dx  × δx
                                                                 f(x + δx)  y +  dy δx or
                            Second derivative                                  dx dy
                     d y   d dy            d                     f(x + δx)  f(x) +  dx δx
                      2
                     dx 2  =  ( ) or f″(x) =  dx [f′(x)]
                          dx dx
                                                      179
                                                      179
         02 Ranger Mate Tambahan Tg5.indd   179                                             25/02/2022   9:23 AM
   21   22   23   24   25   26   27   28   29   30   31