Page 22 - TI Journal 18-1
P. 22
16 SALMINEN ET AL.
and measurement bias, we can remove more barri- improved DTI tractography. Magn. Reson. Med.
ers of uncertainty, which will allow us to unveil the 73(3):1075-1084; 2015.
dynamic physiological and microstructural mecha- 9. Basser, P. J.; Mattiello, J.; LeBihan, D. MR diffu-
nisms of the normal and disordered brain. Pushing sion tensor spectroscopy and imaging. Biophys. J.
66(1):259; 1994.
the conventions of neuroimaging technology will 10. Basser, P. J. Inferring microstructural features and the
continue to boost the value of data it yields and help physiological state of tissues from diffusion-weighted
solve the mysteries of this remarkably complex organ. images. NMR Biomed. 8(7):333-44; 1995.
11. Bennett, I. J.; Madden, D. J.; Vaidya, C. J.; Howard, D.
ACKNOWLEDGMENTS V.; Howard, J. H. Age‐related differences in multiple
This work was supported by the National Institutes measures of white matter integrity: a diffusion tensor
of Health/National Institute of Neurological Disorders imaging study of healthy aging. Hum. Brain Mapp.
31(3):378-390; 2010.
and Stroke grant numbers R01 NS052470 and R01 12. Berlot, R.; Metzler-Baddeley, C.; Jones, D. K.;
NS039538 and the National Institutes of Health/ O’Sullivan, M. J. CSF contamination contributes to
National Institute of Mental Health grant number apparent microstructural alterations in mild cognitive
R21 MH105822. Recruitment database searches were impairment. Neuroimage 92:27-35; 2014.
supported in part by the National Institutes of Health/ 13. Bottomley, P. A.; Foster, T. H.; Argersinger, R. E.;
National Center for Research Resources grant number Pfeifer, L. M. A review of normal tissue hydrogen
UL1 TR000448. The authors declare no conflicts of NMR relaxation times and relaxation mechanisms
interest. from 1–100 MHz: dependence on tissue type, NMR
frequency, temperature, species, excision, and age. J.
Med. Phys. 11(4):425-448; 1984.
REFERENCES 14. Brown, M. A.; Semelka, R. C. MRI: basic principles and
1. Ajilore, O.; Zhan, L.; GadElkarim, J.; Zhang, A.; applications. Hoboken, NJ: John Wiley & Sons; 2011.
Feusner, J. D.; Yang, S.; Thompson, P. M.; Kumar, A.; 15. Burzynska, A. Z.; Preuschhof, C.; Bäckman, L.; Nyberg,
Leow, A. Constructing the resting state structural L.; Li, S. C.; Lindenberger, U.; Heekeren, H. R. Age-
connectome. Front. Neuroinform. 7:1-8; 2013. related differences in white matter microstructure:
2. Alexander, A. L.; Hasan, K. M.; Lazar, M.; Tsuruda, J. region-specific patterns of diffusivity. Neuroimage
S.; Parker, D. L. Analysis of partial volume effects in 49(3):2104-2112; 2010.
diffusion‐tensor MRI. Magn. Reson. Med. 45(5):770- 16. Chang, L.; Wong, V.; Nakama, H.; Watters, M.;
80; 2001. Ramones, D.; Miller, E. N.; Cloak, C.; Ernst, T. Greater
3. Alexander, A. L.; Lee, J. E.; Lazar, M.; Field, A. S. than age-related changes in brain diffusion of HIV
Diffusion tensor imaging of the brain. Neurothera- patients after 1 year. J. Neuroimmune Pharmacol.
peutics 4(3):316-329; 2007. 3(4):265-274; 2008.
4. Amiry-Moghaddam, M.; Ottersen, O. P. The molec- 17. Chou, M. C.; Lin, Y. R.; Huang, T. Y.; Wang, C. Y.;
ular basis of water transport in the brain. Nat. Rev. Chung, H. W.; Juan, C. J.; Chen, C. Y. FLAIR diffu-
Neurosci. 4(12):991-1001; 2003. sion-tensor MR tractography: comparison of fiber
5. Assaf, Y.; Mayzel-Oreg, O.; Gigi, A.; Ben-Bashat, D.; tracking with conventional imaging. AJNR 26(3):591-
Mordohovitch, M.; Verchovsky, R.; Reider-Groswasser, 597; 2005.
I. I.; Hendler, T.; Graif, M.; Cohen, Y.; Korczyn, A. 18. Conturo, T. E.; McKinstry, R. C.; Aronovitz, J. A.;
D. High b value q-space-analyzed diffusion MRI in Neil, J. J. Diffusion MRI: precision, accuracy and flow
vascular dementia: a preliminary study. J. Neurol. Sci. effects. NMR Biomed. 8(7):307-32; 1995.
203:235-239; 2002. 19. Conturo, T. E.; McKinstry, R. C.; Akbudak, E.;
6. Ballester, M. A.; Zisserman, A.; Brady, M. Segmentation Robinson, B. H. Encoding of anisotropic diffusion
and measurement of brain structures in MRI including with tetrahedral gradients: a general mathematical
confidence bounds. Med. Image Anal. 4(3):189-200; diffusion formalism and experimental results. Magn.
2000. Reson. Med. 35(3):399-412; 1996.
7. Ballester, M. A.; Zisserman, A. P.; Brady, M. Estimation 20. Da Mota, B.; Tudoran, R.; Costan, A.; Varoquaux,
of the partial volume effect in MRI. Med. Image Anal. G.; Brasche, G.; Conrod, P.; Lemaitre, H.; Paus, T.;
6(4):389-405; 2002. Rietschel, M.; Frouin, V.; Poline, J. B. Machine learning
8. Baron, C. A.; Beaulieu, C. Acquisition strategy to re- patterns for neuroimaging-genetic studies in the cloud.
duce cerebrospinal fluid partial volume effects for Front. Neuroinform. 8:31; 2014.

