Page 23 - TI Journal 18-1
P. 23
CSF SUPPRESSION METHODS FOR DTI 17
21. De Coene, B.; Hajnal, J. V.; Gatehouse, P.; Longmore, 32. Honey, C. J.; Sporns, O.; Cammoun, L.; Gigandet,
D. B.; White, S. J., Oatridge, A.; Pennock, J. M.; Young, X.; Thiran, J. P.; Meuli, R.; Hagmann, P. Predicting
I. R.; Bydder, G. M. MR of the brain using fluid-atten- human resting-state functional connectivity from
uated inversion recovery (FLAIR) pulse sequences. structural connectivity. Proc. Natl. Acad. Sci. U.S.A.
Am. J. Neuroradiol. 13(6):1555-64; 1992. 106(6):2035-2040; 2009.
22. Dietrich, O.; Biffar, A.; Baur-Melnyk, A.; Reiser, M. 33. Hui, E. S.; Cheung, M. M.; Chan, K. C.; Wu, E. X.
F. Technical aspects of MR diffusion imaging of the B-value dependence of DTI quantitation and sensi-
body. Eur. J. Radiol. 76(3):314-322; 2010. tivity in detecting neural tissue changes. Neuroimage
23. Dyrba, M.; Barkhof, F.; Fellgiebel, A.; Filippi, M.; 49(3):2366-2374; 2010.
Hausner, L.; Hauenstein, K.; Kirste, T.; Teipel, S. J. 34. Jensen, J. H.; Helpern, J. A.; Ramani, A.; Lu, H.;
Predicting prodromal Alzheimer’s disease in sub- Kaczynski, K. Diffusional kurtosis imaging: the quan-
jects with mild cognitive impairment using machine tification of non‐Gaussian water diffusion by means
learning classification of multimodal multicenter dif- of magnetic resonance imaging. Magn. Reson. Med.
fusion‐tensor and magnetic resonance imaging data. 53(6):1432-1440; 2005.
J. Neuroimaging 5(25):738-747; 2015. 35. Jones, D. K.; Horsfield, M. A.; Simmons, A. Optimal
24. Gould, I. C.; Shepherd, A. M.; Laurens, K. R.; Cairns, strategies for measuring diffusion in anisotropic sys-
M. J.; Carr, V. J.; Green, M. J. Multivariate neuroana- tems by magnetic resonance imaging. Magn. Reson.
tomical classification of cognitive subtypes in schizo- Med. 42(3):515-525; 1999.
phrenia: a support vector machine learning approach. 36. Kalaria, R. N. Small vessel disease and Alzheimer’s
Neuroimage Clin. 6:229-36; 2014. dementia: pathological considerations. Cerebro-vasc.
25. Greicius, M. D.; Supekar, K.; Menon, V.; Dougherty, Dis. 13(2):48-52; 2002.
R. F. Resting-state functional connectivity reflects 37. Kalender, W. A. X-ray computed tomography. Phys.
structural connectivity in the default mode network. Med. Biol. 51(13):R29; 2006.
Cereb. Cortex. 19(1):72-8; 2009. 38. Klöppel, S.; Stonnington, C. M.; Barnes, J.; Chen, F.;
26. Hagmann, P.; Jonasson, L.; Maeder, P.; Thiran, J. P.; Chu, C.; Good, C. D.; Mader, I.; Mitchell, L. A.; Patel
Wedeen, V. J.; Meuli, R. Understanding diffusion MR A. C.; Roberts, C. C.; Fox, N. C. Accuracy of dementia
imaging techniques: from scalar diffusion-weight- diagnosis—a direct comparison between radiologists
ed imaging to diffusion tensor imaging and beyond. and a computerized method. Brain 131(11):2969-74;
Radiographics 26(1): S205-223; 2006. 2008.
27. Hajnal, J. V.; Bryant, D. J.; Kasuboski, L.; Pattany, P. M.; 39. Klöppel, S.; Chu, C.; Tan, G. C.; Draganski, B.; Johnson,
De Coene, B.; Lewis, P. D.; Pennock, J. M.; Oatridge, H.; Paulsen, J. S.; Kienzle, W.; Tabrizi, S. J.; Ashburner,
A.; Young, I. R.; Bydder, G. M. Use of fluid attenuated J.; Frackowiak, R. S. Automatic detection of preclini-
inversion recovery (FLAIR) pulse sequences in MRI of cal neurodegeneration; presymptomatic Huntington
the brain. J. Comput. Assist. Tomo. 16(6):841-4; 1992. disease. Neurology 72(5):426-31; 2009.
28. Hansen, M. B.; Jespersen, S. N.; Leigland, L. A.; 40. Klöppel, S.; Abdulkadir, A.; Jack, C. R.; Koutsouleris,
Kroenke, C. D. Using diffusion anisotropy to char- N.; Mourão-Miranda, J.; Vemuri, P. Diagnostic neu-
acterize neuronal morphology in gray matter: the roimaging across diseases. Neuroimage 61(2):457-63;
orientation distribution of axons and dendrites in the 2012.
NeuroMorpho.org database. Front. Integr. Neurosci. 41. Koenig, S. H. Classes of hydration sites at protein-wa-
7(31):1-13; 2013. ter interfaces: the source of contrast in magnetic reso-
29. Hashemi, R. H.; Bradley, W. G.; Lisanti, C. J. MRI: nance imaging. Biophys. J. 69(2):593-603; 1995.
the basics. Philadelphia, PA: Lippincott Williams & 42. Koo, B. B.; Hua, N.; Choi, C. H.; Ronen, I.; Lee, J. M.;
Wilkins; 2012. Kim, D. S. A framework to analyze partial volume
30. He, Y.; Wang, L.; Zang, Y.; Tian, L.; Zhang, X.; Li, effect on gray matter mean diffusivity measurements.
K.; Jiang, T. Regional coherence changes in the early Neuroimage 44(1):136-44; 2009.
stages of Alzheimer’s disease: a combined structural 43. Kubicki, M.; Park, H.; Westin, C. F.; Nestor, P. G.;
and resting-state functional MRI study. Neuroimage Mulkern, R. V.; Maier, S. E.; Niznikiewicz, M.; Connor,
35(2):488-500; 2007. E. E.; Levitt, J. J.; Frumin, M. M.; Kikinis, R. DTI and
31. Hecke, W. V.; Nagels, G.; Leemans, A.; Vandervliet, MTR abnormalities in schizophrenia: analysis of white
E.; Sijbers, J.; Parizel, P. M. Correlation of cognitive matter integrity. Neuroimage 26(4):1109-1118; 2005.
dysfunction and diffusion tensor MRI measures in 44. Latour, L. L.; Warach, S. Cerebral spinal fluid contam-
patients with mild and moderate multiple sclerosis. ination of the measurement of the apparent diffusion
J. Magn. Reson. Im. 31(6):1492-1498; 2010. coefficient of water in acute stroke. Magn. Reson. Med.

