Page 77 - TI Journal 18-1
P. 77
IMAGING THE PERIVASCULAR SPACE 71
10. Carare, R.; Bernardes-Silva, M.; Newman, T.; A.H. Features of Virchow-Robin spaces in newly
Page, A.; Nicoll, J.; Perry, V.; Weller, R. Solutes, diagnosed multiple sclerosis patients. Eur. J.
but not cells, drain from the brain parenchyma Radiol.80(2):e104-108; 2010.
along basement membranes of capillaries and 20. Gaberel, T.; Gakuba, C.; Goulay, R.; Lizarrondo,
arteries: significance for cerebral amyloid angi- S.; Hanouz, J.; Emery, E.; Touze, E.; Vivien, D.;
opathy and neuroimmunology. Neuropathol. Gauberti, M. Impaired glymphatic perfusion
Appl. Neurobiol. 34:131-144; 2008. after strokes revealed by contrast-enhanced MRI:
11. Carare, R.; Teeling, J.; Hawkes, C.; Püntener, U.; a new target for fibrinolysis? Stroke 45:3092-
Weller, R.; Nicoll, J.; Perry, V. Immune complex 3096; 2014.
formation impairs the elimination of solutes 21. Gallina, P.; Scollato, A.; Conti, R.; Di Lorenzo,
from the brain: Implications for immunother- N.; Porfirio, B. Aβ clearance, “hub” of multiple
apy in Alzheimer’s disease. Acta. Neuropathol. deficiencies leading to Alzheimer disease. Front.
Commun. 1:1-11; 2013. Aging Neurosci. 7; 2015.
12. Charidimou, A.; Jaunmuktane, Z.; Baron, J.; 22. Groeschel, S.; Chong, WK.; Surtees, R.; Hanefeld,
Burnell, M.; Varlet, P.; Peeters, A.; Xuereb, J.; F. Virchow–Robin spaces on magnetic resonance
Jäger, R.; Brandner, S.; Werring, D. White images: normative data, their dilatation, and
matter perivascular spaces: an MRI marker in a review of the literature. Neuroradiology 48:
pathology-proven cerebral amyloid angiopa- 745–754; 2006.
thy? Neurology 82:57–62; 2014. 23. Hadaczek, P.; Yamashita, Y.; Mirek, H.; Tamas, L.;
13. Chen, L.; Beckett, A.; Verma, A.; Feinberg, D. Bohn, M.; Noble, C.; Park, J; Bankiewicz, K. The
Dynamics of respiratory and cardiac CSF motion “perivascular pump” driven by arterial pulsation
revealed with real-time simultaneous multi-slice is a powerful mechanism for the distribution of
EPI velocity phase contrast imaging. Neuroimage therapeutic molecules within the Brain. Mol.
122:281-287; 2015. Ther. 14:69-78; 2006.
14. Denk, W.; Strickler, J.; Webb, W. Two-photon 24. Haglund, M.; Kalaria R.; Slade, J.; Englund, E.
laser scanning fluorescence microscopy. Science Differential deposition of amyloid beta peptides
248:73-76; 1990. in cerebral amyloid angiopathy associated with
15. Doubal, F.; MacLullich, A.; Ferguson, K.; Dennis, Alzheimer’s disease and vascular dementia. Acta.
M.; Wardlaw, J. Enlarged perivascular spaces on Neuropathol. 111:430–435; 2006.
MRI are a feature of cerebral small vessel disease. 25. Hansen, T.; Cain, J.; Thomas, O.; Jackson, A.
Stroke 41:450–454; 2010. Dilated perivascular spaces in the basal gan-
16. Dreha-Kulaczewski, S.; Joseph, A.; Merboldt, glia are a biomarker of small-vessel disease in
K.; Ludwig, H.; Gartner, J.; Frahm, J. Inspiration a very elderly population with dementia. Am. J.
is the major regulator of human CSF flow. J. Neuroradiol. 36:893-898; 2015
Neurosci. 35:2485-2491; 2015. 26. Hama, H.; Kurokawa, H.; Kawano, H.; Ando, R.;
17. Eide, P.K.; Ringstad, G. MRI with intra- Shimogori, T.; Noda, H.; Fukami, K.; Sakaue-
thecal MRI gadolinium contrast medium Sawano, A.; Miyawaki, A. Scale: a chemical
administration: a possible method to assess approach for fluorescence imaging and recon-
glymphatic function in human brain. Acta. struction of transparent mouse brain. Nat.
Radiol. 4(11):2058460115609635; 2015. Neurosci. 14:481-1488; 2011.
18. Engelhardt, B.; Sorokin, L. The blood–brain and 27. Hasiloglu, Z.; Albayram, S.; Gorucu, Y.; Selcuk,
the blood–cerebrospinal fluid barriers: function H.; Cagil, E.; Erdemli, H.; Adaletli, I. Assessment
and dysfunction. Semin. Immunopathol. 31:497- of CSF flow dynamics using PC-MRI in spon-
511; 2009. taneous intracranial hypotension. Headache
19. Etemadifar, M.; Hekmatnia, A.; Tayari, N.; 52:808-819; 2012.
Kazemi, M.; Ghazevi, A.; Akbari, M.; Maghzi, 28. Hawkes, C.; Gatherer, M.; Sharp, M.; Dorr,

