Page 80 - TI Journal 18-1
P. 80

74                                  HUFFMAN ET. AL



          Neurol. 273:57-68; 2015.                  77.  Wolf, D. Fundamentals of fluorescence and flu-
      69.  Stivaros, S.; Jackson, A. Changing concepts   orescence microscopy. Method Cell Biol. 81:63-
          of cerebrospinal fluid hydrodynamics: role of   91; 2007.
          phase-contrast magnetic resonance imaging and   78.  Wuerfel, J.; Haertle, M.; Waiczies, H.; Tysiak, E.;
          implications for cerebral microvascular disease.   Bechmann, I.; Wernecke, K.D.; Zipp., F.; Paul, F.
          Neurotherapeutics 4:511-522; 2007.           Perivascular spaces—MRI marker of inflamma-
      70.  Svoboda, K.; Yasuda, R. Principles of two-photon   tory activity in the brain? Brain 131:2332-2340;
          excitation microscopy and its applications to   2008.
          neuroscience. Neuron 50:823-839; 2006.    79.  Xie, L., Kang, H., Xu, Q., Chen, M., Liao, Y.,
      71.  Szentistvanyi, I.; Patlak, C.; Ellis, R.; Cserr,   Thiyagarajan, M.; O’Donnell, J.; Christensen,
          H. Drainage of interstitial fluid from differ-  J.; Nicholson, C.; Iliff, J.; Takano, T.; Deane, R.;
          ent regions of rat brain. Am. J. Physiol-Renal.   Nedergaard, M. Sleep drives metabolite clearance
          246:F835-F844; 1984                           from the adult brain. Science 342:373-377; 2013.
      72.  Tarasoff-Conway, J.; Carare, R.; Osorio, R.;   80.  Yamada, K.; Holth, J.; Liao, F.; Stewart, F.; Mahan,
          Glodzik, L.; Butler, T.; Fieremans, E.; Axel,   T.; Jiang, H.; Cirrito, J.; Patel, T.; Hochgrafe, K.;
          L.; Rusinek, H.; Nicholson, C.; Zlokovic, B.;   Mandelkow, E.; Holtzman, D. Neuronal activity
          Frangione, B; Blennow, K.; Ménard, J.; Zetterberg,   regulates extracellular tau in vivo. J. Exp. Med.
          H.; Wisniewski, T.; Leon, M. Clearance systems   211:387-393; 2014.
          in the brain—implications for Alzheimer disease.   81.  Yang, L.; Kress, B.; Weber, H.; Thiyagarajan, M.;
          Nat. Rev. Neurol. 11:457-470; 2015.          Wang, B.; Deane, R.; Benveniste, H.; Iliff, J.;
      73.  Tian, J.; Shi, J.; Smallman, R.; Iwatsubo, T.;   Nedergaard, M. Evaluating glymphatic pathway
          Mann, D.M. Relationships in Alzheimer’s dis-  function utilizing clinically relevant intrathecal
          ease between the extent of Abeta deposition in   infusion of CSF tracer. J. Transl. Med. 1:1-9; 2013.
          cerebral blood vessel walls, as cerebral amyloid   82.  Yang, J.; Lundeb, L.K.; Nuntagijb, P.; Oguchib, T.;
          angiopathy, and the amount of cerebrovascular   Camassab, L.M.; Nilssone, L.N.; Lannfelt, L.; Xu,
          smooth muscle cells and collagen. Neuropathol.   Y.; Amiry-Moghaddam, M.; Otterson, O.P.; Torp,
          Appl. Neuro. 32:332–340; 2006.               R. Loss of astrocyte polarization in the tg-ArcSwe
      74.  Wang, P.; Olbricht, W. Fluid mechanics in the   mouse model of Alzheimer’s. J. Alzheimers Dis.
          perivascular space. J. Theor. Biol. 274:52-57; 2011.  27:711-722; 2011.
      75.  Webb, D.; Brown, C. Epi-fluorescence micros-  83.  Zhang, E.; Richards, H.; Kida, S.; Weller, R.
          copy. Methods Mol. Bio. 931:29-59; 2013.     Directional and compartmentalised drainage of
      76.  Weller, R.O.; Massey, A.; Kuo, Y.M.; Roher, A.E.   interstitial fluid and cerebrospinal fluid from the
          Cerebral amyloid angiopathy: accumulation     rat brain. Acta Neuropathol. 83(3):233-239; 1984.
          of Aβ in interstitial fluid drainage pathways in   84.  Zong, X.; Park, S.H.; Shen, D.; Lin, W.
          Alzheimer’s disease. Ann. NY. Acad. Sci. 903:110-  Visualization of perivascular spaces in the human
          117; 2000.                                    brain at 7T: sequence optimization and morphol-
                                                        ogy characterization. Neuroimage 125:895-902;
                                                       2016.
   75   76   77   78   79   80   81   82   83   84   85