Page 80 - TI Journal 18-1
P. 80
74 HUFFMAN ET. AL
Neurol. 273:57-68; 2015. 77. Wolf, D. Fundamentals of fluorescence and flu-
69. Stivaros, S.; Jackson, A. Changing concepts orescence microscopy. Method Cell Biol. 81:63-
of cerebrospinal fluid hydrodynamics: role of 91; 2007.
phase-contrast magnetic resonance imaging and 78. Wuerfel, J.; Haertle, M.; Waiczies, H.; Tysiak, E.;
implications for cerebral microvascular disease. Bechmann, I.; Wernecke, K.D.; Zipp., F.; Paul, F.
Neurotherapeutics 4:511-522; 2007. Perivascular spaces—MRI marker of inflamma-
70. Svoboda, K.; Yasuda, R. Principles of two-photon tory activity in the brain? Brain 131:2332-2340;
excitation microscopy and its applications to 2008.
neuroscience. Neuron 50:823-839; 2006. 79. Xie, L., Kang, H., Xu, Q., Chen, M., Liao, Y.,
71. Szentistvanyi, I.; Patlak, C.; Ellis, R.; Cserr, Thiyagarajan, M.; O’Donnell, J.; Christensen,
H. Drainage of interstitial fluid from differ- J.; Nicholson, C.; Iliff, J.; Takano, T.; Deane, R.;
ent regions of rat brain. Am. J. Physiol-Renal. Nedergaard, M. Sleep drives metabolite clearance
246:F835-F844; 1984 from the adult brain. Science 342:373-377; 2013.
72. Tarasoff-Conway, J.; Carare, R.; Osorio, R.; 80. Yamada, K.; Holth, J.; Liao, F.; Stewart, F.; Mahan,
Glodzik, L.; Butler, T.; Fieremans, E.; Axel, T.; Jiang, H.; Cirrito, J.; Patel, T.; Hochgrafe, K.;
L.; Rusinek, H.; Nicholson, C.; Zlokovic, B.; Mandelkow, E.; Holtzman, D. Neuronal activity
Frangione, B; Blennow, K.; Ménard, J.; Zetterberg, regulates extracellular tau in vivo. J. Exp. Med.
H.; Wisniewski, T.; Leon, M. Clearance systems 211:387-393; 2014.
in the brain—implications for Alzheimer disease. 81. Yang, L.; Kress, B.; Weber, H.; Thiyagarajan, M.;
Nat. Rev. Neurol. 11:457-470; 2015. Wang, B.; Deane, R.; Benveniste, H.; Iliff, J.;
73. Tian, J.; Shi, J.; Smallman, R.; Iwatsubo, T.; Nedergaard, M. Evaluating glymphatic pathway
Mann, D.M. Relationships in Alzheimer’s dis- function utilizing clinically relevant intrathecal
ease between the extent of Abeta deposition in infusion of CSF tracer. J. Transl. Med. 1:1-9; 2013.
cerebral blood vessel walls, as cerebral amyloid 82. Yang, J.; Lundeb, L.K.; Nuntagijb, P.; Oguchib, T.;
angiopathy, and the amount of cerebrovascular Camassab, L.M.; Nilssone, L.N.; Lannfelt, L.; Xu,
smooth muscle cells and collagen. Neuropathol. Y.; Amiry-Moghaddam, M.; Otterson, O.P.; Torp,
Appl. Neuro. 32:332–340; 2006. R. Loss of astrocyte polarization in the tg-ArcSwe
74. Wang, P.; Olbricht, W. Fluid mechanics in the mouse model of Alzheimer’s. J. Alzheimers Dis.
perivascular space. J. Theor. Biol. 274:52-57; 2011. 27:711-722; 2011.
75. Webb, D.; Brown, C. Epi-fluorescence micros- 83. Zhang, E.; Richards, H.; Kida, S.; Weller, R.
copy. Methods Mol. Bio. 931:29-59; 2013. Directional and compartmentalised drainage of
76. Weller, R.O.; Massey, A.; Kuo, Y.M.; Roher, A.E. interstitial fluid and cerebrospinal fluid from the
Cerebral amyloid angiopathy: accumulation rat brain. Acta Neuropathol. 83(3):233-239; 1984.
of Aβ in interstitial fluid drainage pathways in 84. Zong, X.; Park, S.H.; Shen, D.; Lin, W.
Alzheimer’s disease. Ann. NY. Acad. Sci. 903:110- Visualization of perivascular spaces in the human
117; 2000. brain at 7T: sequence optimization and morphol-
ogy characterization. Neuroimage 125:895-902;
2016.

