Page 13 - Engineering Mathematics Workbook_Final
P. 13
Calculus
1 1 z − 2 y
)
5
f
1. The integral dx dy dz = 4. Let ( , x y = x y 2 tan − 1 . Then
0 0 0 x
___________ f f
x + y = _______
1 1 y − 2 x y
(a) dx dz dy
0 0 0 (a) 2f (b) 3f
1 1 y − 1 (c) 5f (d) 7f
(b) dx dz dy
0 0 0 [JAM 2006]
2 2 1 z cos x t − 2
−
f
(c) dx dz dy 5. Let ( ) x = e dt . Then
0 0 0 sin x
1
f )
( / 4 equals _______
2 2 1 y
−
(d) dx dz dy
0 0 0 (a) 1 e (b) − 2 e
[JAM 2005]
(c) 2 e (d) − 1 e
2 n + 1 + 3 n + 1
2. Lt
n
n→ 2 + 3 n [JAM 2006]
(a) 3 (b) 2 1 cx 1 x
+
6. If Lt = 4 then
−
(c) 0 (d) 1 x→ 0 1 cx
+
[JAM 2006] 1 2cx 1 x
Lt − is _________
17
f x =
3. Let ( ) (x − 2 ) (x + ) 5 24 then x→ 0 1 2cx
_______ (a) 2 (b) 4
(a) f does not have a critical point at (c) 16 (d) 64
[IISC 2008]
(b) f has maxima at 2
2
y
(c) f has minima at 2 7. Evaluate xe dx dy where R is
R
(d) f has neither minima nor maxima at 2 the region bounded by the lines x = 0, y
2
[JAM 2006] = 1 and the parabola y = x .
[JAM 2006]
11

