Page 9 - Engineering Mathematics Workbook_Final
P. 9
Linear Algebra
(a) 1 (b) 2 x p q 1
(c) 25 (d) 50 a x r 1
36. If = 0 then x = ______
[MS 2010] a b x 1
a b c 1
1 8
33. An Eigen vector of the matrix
0 1 [IISC 2000]
is ___________ 37. The characteristic polynomial of the
0 0 0
T
T
1,2
(a) ( ) (b) (5,0 )
matrix 1 0 1 is ____________
T
T
1,1
(c) (0,2 ) (d) ( ) 0 1 0
[MS 2011] 2 2
(a) ( x x + ) 1 (b) ( x x − ) 1
34. An Eigen vector of the matrix
2 1 0 2
(c) ( x x + ) 1 (d) ( x x − ) 1
2
1 2 1
0 0 2 [IISC 2002]
1 0 38. Let A be a 3 3 real matrix. Suppose
A = 0. Then A has ______
4
(a) 0 (b) 1
0 0 (a) exactly two distinct real eigen values
0 2 (b) exactly one non-zero real Eigen
value
(c) 0 (d) 2
(c) exactly 3 distinct real Eigen values
1 2
(d) No non-zero real eigen value
[MS 2012]
[IISC 2002]
35. Let A be a 3 3 real matrix with Eigen
values 1, 2, 3 and det B = A + − 1 A . 39. The determinant
2
Then the trace of the matrix B equal to x 0 x 1 x 2 x 3 x 4
________ x 0 x x 2 x 3 x 4
x x x x x = _________
91 95 0 1 3 4
(a) (b) x x x x x
6 6 0 1 2 4
97 101 x 0 x 1 x 2 x 3 x
(c) (d)
6 6
[MS 2013]
7

