Page 9 - Engineering Mathematics Workbook_Final
P. 9

Linear Algebra

                   (a) 1                 (b) 2                              x   p q     1

                   (c) 25                (d) 50                             a   x    r  1
                                                                  36.    If               =  0 then  x  = ______
                                                [MS 2010]                   a   b    x  1
                                                                            a   b    c  1
                                                   1 8 
            33.    An Eigen vector of the matrix        
                                                     0 1                                         [IISC 2000]

                   is ___________                                 37.    The characteristic polynomial of the
                                                                                  0 0 0   
                            T
                                                  T
                       1,2
                   (a) ( )               (b) (5,0 )                                        
                                                                                
                                                                         matrix  1 0 1       is ____________
                                                                                
                                                 T
                            T
                                             1,1
                   (c) (0,2 )            (d) ( )                                      0 1 0     
                                                [MS 2011]                        2                         2
                                                                         (a)  ( x x +  ) 1     (b)  ( x x −  ) 1
            34.    An Eigen vector of the matrix
                     2 1 0                                                          2
                                                                       (c)  ( x x +  ) 1     (d)  ( x x −  ) 1
                                                                                                       2
                             
                     1 2 1
                             
                         0 0 2                                                                 [IISC 2002]
                                                                                      
                         1                  0                 38.    Let A be a 3 3 real matrix. Suppose
                                                                  A =  0. Then A has ______
                                                                           4
                       
                                            
                   (a)  0               (b)  1
                                            
                             0              0                (a) exactly two distinct real eigen values
                         0                  2                        (b) exactly one non-zero real Eigen
                                                                 value
                                            
                       
                   (c)  0               (d)  2
                                                                     (c) exactly 3 distinct real Eigen values
                             1              2     
                                                                         (d) No non-zero real eigen value
                                                [MS 2012]
                                                                                                     [IISC 2002]
                                
            35.    Let A be a 3 3 real matrix with Eigen
                   values 1, 2, 3 and  det B =  A +  − 1  A .     39.    The determinant
                                                        2
                   Then the trace of the matrix B equal to                x 0  x 1  x 2  x 3  x 4
                   ________                                               x 0  x    x 2  x 3  x 4
                                                                          x    x    x    x    x =  _________
                       91                    95                            0    1         3    4
                   (a)                   (b)                              x    x    x    x    x
                       6                     6                             0    1    2         4

                       97                   101                           x 0  x 1  x 2  x 3  x
                   (c)                   (d)
                       6                      6


                                                [MS 2013]



                                                              7
   4   5   6   7   8   9   10   11   12   13   14