Page 8 - Engineering Mathematics Workbook_Final
P. 8

Linear Algebra
                             
            28.    If A is a 3 3 non zero matrix such that                      6   
                                                                            
                    A =  0, then the number of non-zero                  (a)  0  
                     2
                                                                            
                   eigen values of A is _________                                   0       

                   (a) 0                 (b) 1
                                                                               1  
                   (c) 2                 (d) 3                                   6   
                                                                         (b)     0   
                                                [MS 2008]                        
                                                                                 0    

                             a
            29.    Let  A = ( )  be an orthogonal matrix                         
                              ij
                                             1                                2 +  1  
                   of order n such that a =     ,                                 4   
                                        ij
                                              n                                      
                                                                         (c)    0    
                                           1  n  n                                   
                   i = 1,2,........n. If a =  2    a  then                    0    
                                           n  i=  1 j=  1  ij                         

                    n
                      n  ( ij  a ) 2  =  ____                          (d) not determined uniquely
                          a −
                   i=  1 j=  1
                                                                                                     [IISC 2006]
                       n + 1                 n − 1
                   (a)                   (b)                      31.    The determinant
                         n                    n
                                                                            +
                                                                                    +
                                                                          a b     c d      e   1
                       n +  1                n − 1                        b c     d +  a   f   1
                        2
                                              2
                                                                            +
                   (c)                   (d)
                         n                     n                          c d     a b      g   1  =_________
                                                                            +
                                                                                    +
                                                                                    +
                                                [MS 2009]                 d +  a  b c      h   1
                                    
            30.    Let M denote a 3 3 real matrix such                   (a) 0
                                                     1  
                                          4     4                (b) 1
                                    1
                            1
                                                   
                                               
                            
                   that M                 5 =   1 
                            2 = 
                                    2 , M 
                                               
                                                                                       +
                                                                                +
                                                                                           ) e
                                                5                (c) (a b  )(c d + +       f +  g +  h
                                              0           0      
                                    3
                            3
                                   
                            
                                   
                            
                                                                                + + +
                             6                                       (d) (a b c d       )(e +  f +  g +  ) h
                             
                   then M     0     is                                                           [IISC 2006]
                             
                                 0                          32.    Let  P =    be a 50 50 matrix,
                                                                                                
                                                                                   p
                                                                                     ij
                                                                         where
                                                                          p =  ij  min  (  ,i j ) i j =  ,  1,2,......50 
                                                                         then the rank of P is _________


                                                              6
   3   4   5   6   7   8   9   10   11   12   13