Page 8 - Engineering Mathematics Workbook_Final
P. 8
Linear Algebra
28. If A is a 3 3 non zero matrix such that 6
A = 0, then the number of non-zero (a) 0
2
eigen values of A is _________ 0
(a) 0 (b) 1
1
(c) 2 (d) 3 6
(b) 0
[MS 2008]
0
a
29. Let A = ( ) be an orthogonal matrix
ij
1 2 + 1
of order n such that a = , 4
ij
n
(c) 0
1 n n
i = 1,2,........n. If a = 2 a then 0
n i= 1 j= 1 ij
n
n ( ij a ) 2 = ____ (d) not determined uniquely
a −
i= 1 j= 1
[IISC 2006]
n + 1 n − 1
(a) (b) 31. The determinant
n n
+
+
a b c d e 1
n + 1 n − 1 b c d + a f 1
2
2
+
(c) (d)
n n c d a b g 1 =_________
+
+
+
[MS 2009] d + a b c h 1
30. Let M denote a 3 3 real matrix such (a) 0
1
4 4 (b) 1
1
1
that M 5 = 1
2 =
2 , M
+
+
) e
5 (c) (a b )(c d + + f + g + h
0 0
3
3
+ + +
6 (d) (a b c d )(e + f + g + ) h
then M 0 is [IISC 2006]
0 32. Let P = be a 50 50 matrix,
p
ij
where
p = ij min ( ,i j ) i j = , 1,2,......50
then the rank of P is _________
6

