Page 181 - Engineering Mathematics Workbook_Final
P. 181

Probability & Statistics

                        3                    3                           probability that the selected
                   (c)                   (d)
                       64                    16                          individual actually has the disease is
                                                                         _______
                                               [MS 2007]
                                                                         (a) 0.01              (b) 0.05
            102.  Let E and F be two events such that
                   0   P ( ) 1E   and                                  (c) 0.5               (d) 0.99


                     ( / F +
                                             =
                                  ( /
                   P E       ) P E F      C  ) 1. Then                                               [MS 2009]
                   ____                                           105.  Let X be a random variable with
                                                                         mean µ and variance 9. Then the
                   (a) E and F are mutually exclusive
                                                                         smallest value of m such that

                   (b) E and F are independent                           P ( X −     m )   0.99 is
                                       (
                                                   =
                       P
                   (c)  ( E C  / F +  ) P E C  / F C  ) 1                __________
                                                                         (a) 90                (b)  90
                                      C
                                   C
                   (d) P(E/F)+P(E /F )=1   [MS 2007]
                                                                               100
            103.  Let X be Poisson (2) and Y be                          (c)                   (d) 30
                   Binomial (10,3/4)  random variables.                        11
                   If X and Y are independent then                                                   [MS 2009]

                   P ( XY =    ) 0  is ________
                                                                  106.  The random variable X has the
                               1   10                                  cumulative distributive Function
                                      −
                   (a) e +  −  2            (1 e −  2 )                        0     if    x   0
                               4                                                
                                                                                  
                                                                                     1
                               1   10                                              3     if    x = 0
                                                                                  
                                                                                  
                   (b) e +  −  2            (1 2e−  −  2 )         F  ( ) x = 
                                                                                    1 x
                               4                                                 +       if  0 x    1
                                                                                  
                                                                                                  
                                                                                     3
                                                                                  
                           1
                             10
                   (c)   −2 ( )                                                      1     if     x  1
                                                                                  
                           4                                                      
                                  4    10                              then E(X) equals ____________
                   (d) e + − 2  1−                      [MS 2008]
                                                                             1
                                  10                                   (a)                   (b) 1
                                                                             3
            104.  For detecting a disease, a test gives
                   correct diagnosis with probability                    (c)   1               (d)   1
                   0.99. It is known that 1% of a                            6                     2

                   population suffers from this disease.
                   If randomly selected individual from                                              [MS 2009]
                   this population test positive then the




                                                            179
   176   177   178   179   180   181   182   183   184   185   186