Page 233 - Engineering Mathematics Workbook_Final
P. 233

Laplace Transforms

            19.    Let ‘y’ be the solution of                            If  ( ) S =     2      then  Lt f t =
                                                                                                          ( )
                     2
                    d y  =  6cos2t ,  ( ) 0 = 3,  ( ) 0 = 1       23.       F        S (1 S  )       x→ 0
                                                                                         +
                                                  1
                                     y
                                                y
                    dt 2                                                 __________ where  ( L f t        F ( ) S
                                                                                                   ( )) =
                   . Let laplace transform of y be F(S),
                   the value of F(1) =                                   (a) 0                 (b) 1
                       17                    13                          (c) 2                 (d) 
                   (a)                   (b)
                                                                                                   
                                                                                                
                        5                    5                                       sin , t  0 t 
                                                                                    
                                                                            f
                                                                  24.    If  ( ) t =                     then
                       26                    11                                       0,       t   2 
                   (c)                   (d)
                                                                               ( )) =
                        5                    5                             ( L f t
            20.    The solution of initial value problem                            1
                            1
                    y +  2y +  10y =   6 ( ) t ,  ( ) 0 = ,             (a)  1 e −  s ( s +  2  ) 1
                     11
                                                       0
                                               y
                                                                              −
                                       f
                            0
                    y 1 ( ) 0 =  where  ( ) t  is direct delta                      1
                   function is                                           (b)      − 
                                                                               +
                                                                             1 e    s ( s +  2  ) 1
                                               t
                          t
                                              e
                        e
                   (a) 2 sin3t           (b) 6 sin3t
                                                                              +
                                                                             1 e  −  s
                   (c) 2e  t −  sin3t    (d) 6e  t −  sin3t              (c)   s + 1
                                                                               2
                                                                               −
            21.    Consider the initial value problems                   (d)  1 e −  s
                                                                               2
                                  =
                            1
                    y +  2y +   y    ( ) t  with                             s +  1
                     11
                                      dy                                  LAPLACE TRANSFORM
                    y ( ) t  = − 2and        = 0. The
                         t=
                           0
                                      dt  t= 0                           USING MAIN DEFINITION
                                        dy                                            1
                   numerical value of           is                                     , where  0 t   k
                                                                                    
                                        dt  t= 0 +                25.    If  ( ) t =   k                    then
                                                                             f
                                                                                    
                                                                                    
                   (a) -2                (b) -1                                       1 when t   k
                                                                           ( L f t
                                                                               ( )) =
                   (c) 0                 (d) 1
                                                                              −
                                                                             1 e  − ks
                                        5s +  2  23s +  6                (a)
            22.    If  ( ) f =  L  F ( ) S =                                   ks 2
                                         ( s s +  2  2s +  ) 2                    − ks
                                                                               +
                              ( )
                   then  Lt f t =                                        (b)  1 e
                         x→ 0                                                  ks 2
                   (a) 3                 (b) 5                               k −  e − ks
                                                                         (c)     2
                       17                                                       s
                   (c)                   (d) 0                                           −
                        2                                                    1 +  (k −  ) 1 e  ks
                                                                         (d)
                                                                                   ks


                                                            231
   228   229   230   231   232   233   234   235   236   237   238