Page 80 - Engineering Mathematics Workbook_Final
P. 80

Vector Calculus

            168.   Value of the integral                                               [GATE-2014-EE-SET 1]
                       C   ( xy dy −  y dx ) , where C is the                                      $
                                    2
                                                                                                  
                                                                  178.   The value of     curlv n ds  where
                   square cut from the first quadrant by the                            S
                                                                                            2
                   lines x = 1 and y = 1 will be (use                    v =  2yi +  3x j −  z k  and S is the
                   Green’s theorem to change the line                    upper half surface of the sphere
                   integral into double integral)
                                                                                             $
                                                                                     2
                                                                         x +   y +  z =  9 , n  is the positive
                                                                           2
                                                                                2
                       1
                   (a)                   (b) 1                           unit normal vector to s and c is its
                       2                                                 boundary ____
                       3                     5                           (a) 3                (b) 9
                   (c)                   (d)
                       2                     3
                                                                         (c) 18               (d) 32

                                             [GATE-2005]                                              $
                                                                                                   )
                                                                  179.   The value of     (     F   n ds
                                             −  yi +  x j                               S
            169.   For a > 0, b > 0 let  F =                                         zi +  x j +
                                           b x +   a y 2                 where  F =            yk  and S is a
                                            2 2
                                                    2
                   be a planar vector field. Let                         hemisphere  z =   1 x −    y  of unit
                                                                                                2
                                                                                                     2
                                                                                            −
                   C =   (   , x  ) y  R 2  / x +  y = a −  b 2       radius above xy plane.
                                                   2
                                              2
                                         2
                    be the circle oriented anticlockwise.                (a)                  (b) 2
                   Then    F   dr =  _____
                         C                                                   
                                                                         (c)                   (d) 4
                       2                                                    2
                   (a)                   (b) 2
                       ab                                         180.   The value of
                                                                           sin zdx −  cos xdy +  sin ydz
                        
                   (c) 2 ab              (d) 0                            C

                                  xdy −  ydx                            where c is the boundary of the rectangle
                                                                               
                                                                           
                                                                         0 x  , 0 
                                                                                          y 
                                                                                                     4
            170.   The value of       2     2   taken in                                      2 ,  z = .
                                 C   x +  y
                   the positive direction over any closed                (a) 1                 (b) 2
                   continuous curve C with origin inside it.
                                                                         (c) 3                 (d) 4
            171.   The line integral of function F = yzi, in
                   the counter clockwise direction, along         181.   The value of    F   dr  where
                   the circle  x +  2  y =  2  1 at z = 1 is                           C
                                                                                2
                                                                         F =  y i +  x j − (x +  2z )k  where C
                                                                                      2
                       −
                   (a)  2               (b)  −                         is the boundary of the triangle with
                                                                         vertices at (0, 0, 0), (a, 0, 0), (a, a, 0).
                   (c)                  (d) 2





                                                             78
   75   76   77   78   79   80   81   82   83   84   85