Page 75 - Engineering Mathematics Workbook_Final
P. 75

Vector Calculus

                         2                    3                          (c) -3                (d) 3
                   (a)                   (b)
                        3                     2                                                      [GATE-99]

                        2                     3                          If  F =  n
                   (c)                   (d)                      144.          r r  is solenoidal then n =
                         3                    2                          ______


                                        [GATE-2005 (IN)]                 (a) -1                (b) -2

            141.   A sphere of unit radius is centred at the             (c) -3                (d) -4
                   origin. The unit normal at a point (x, y,                                            [GATE]
                   z) on the surface of the sphere is the
                   vector.                                                                 1 
                                                                  145.   The value of   2           =  ______  where
                   (a) (x, y, z)                                                           r 

                         1    1   1                                    r  is the position vector of any point. If
                   (b)      ,  ,                                    F =  r  and    F =  0 then n =
                                                                                n
                         3    3    3 
                                                                         _________                    [GATE]
                         x    y    z  
                   (c)      ,  ,                                   If r =  xa x +  ya y +  za         r
                                                                                        $
                                                                                 $
                                                                                               $
                         3    3    3                            146.                           z  and  r = ,
                         x    y    z                                   then div r   2  (ln r =  )  _____
                   (d)      ,   ,         
                          2    2    2                                               [GATE-2014 (EC-SET 2)]


                                        [GATE-2009 (IN)]

                                                                                                               $
                                                                                                   $
                                                                                                         $
            142.   The directional derivative of                  147.   For a position vector r =  x i +  y j +  zk
                    f  ( , x y =  )  xy  (x +  ) y  at (1, 1) in the     the norm of the vector can be defined as
                                 2                                        r −   x +  y +    2
                                                                                 2
                                                                                       2
                   direction of the unit vector at an angle of                             z . Given a function
                                                                         =                   
                       with y-axis, is given by …..                          ln r , its gradient    is
                    4

                                         [2014-EC-SEC 4]                 (a) r                 (b)   r
                                                                                                   r
                                                 3
            143.   For the function  =  ax y −  2  y  to
                   represent the velocity potential of an                      r                    r
                   ideal fluid,   2   should be equal to zero.         (c)   r r             (d)   r  3
                                                                              
                   In that case, the value of ‘a’ has to be

                   (a) -1                (b) 1                    [GATE-2018 (ME-AFTERNOON
                                                                  SESSION)]


                                                             73
   70   71   72   73   74   75   76   77   78   79   80