Page 94 - Engineering Mathematics Workbook_Final
P. 94

Differential Equations & Partial Differential Equations
                            (
                   (a) 2cos 2x +    ) 3 − sin (2x +  ) 3          57.    Consider the following differential
                                                                         equation:
                            (
                   (b) 2sin 2x +    ) 3 +  cos (2x +  ) 3                 dy  = −  5 ; initial condition:  y =  at
                                                                                  y
                                                                                                            2
                                                                          dt
                          (
                   (c) sin 2x +   ) 3 − 2cos (2x +  ) 3                  t = 0
                                                                                               3
                            (
                   (d) 2sin 2x +    ) 3 − cos (2x +  ) 3                 The value of y at t =  is
                                                                             −
                                                                         (a)  5e − 10          (b) 2e − 10
                                         [JAM GP 2009]                          −
                                                                                                   −
                                                                                                        2
                                                                         (c) 2e  15            (d)  15e
                                 2x
                       2x
            55.    If e  and  xe  are particular                                    [GATE-2015-ME-SET-2]
                   solutions of a second order                    58.    Consider the differential equation
                   homogeneous differential equation                      dx
                                                                                  −
                   with constant coefficients, then the                   dt  =  10 0.2x  with initial condition
                   equation is                                           x ( ) 0 = 1. The response  ( ) t  for
                                                                                                   x
                                                                         t  0 is
                         2
                       d y      dy
                                           0
                   (a)      −  4    +  4y =                                       − 0.2t                0.2t
                                                                               −
                                                                                                    −
                       dx 2     dx                                       (a) 2 e               (b) 2 e
                                                                                −
                                                                                                      −
                                                                         (c) 50 49e   − 0.2t     (d) 50 49e 0.2t
                         2
                       d y      dy
                   (b)      − 5     +  6y = 0                                        [GATE-2015-EC-SET-2]
                       dx 2     dx
                                                                  59.    Consider the following differential
                                                                         equation:
                         2
                       d y
                   (c)      −  4y =  0                                                     y
                       dx 2                                                ( x ydx xdy )cos   =
                                                                                +
                                                                                           x
                         2
                       d y      dy                                                         y
                   (d)      − 3     +  2y = 0                              ( y xdy −  ydx )sin
                       dx 2     dx                                                         x
                                                                         Which of the following is the solution
                                         [JAM GP 2010]                   of the above equation (c is an
            56.    The general solution of the                           arbitrary constant)?
                                                 +
                                         dy    1 cos2y                       x      y
                   differential equation     =                           (a)  cos     = c
                                                 −
                                         dx    1 cos2x                       y      x
                   is                                                        x     y
                                                                         (b)  sin     = c
                                     =
                   (a) tan y −  cot x c  (c is a constant)                   y     x y
                                     =
                   (b) tan x −  cot y c  (c is a constant)               (c)  xy cos  =  c
                                                                                    x
                                     =
                   (c) tan y +  cot x c (c is a constant)                (d)  xy sin  y  =  c
                                     =
                   (d) tan x +  cot y c (c is a constant)                           x
                                                                                     [GATE-2015-CE-SET-1]
                               [GATE-2015-EC-SET-2]



                                                             92
   89   90   91   92   93   94   95   96   97   98   99