Page 19 - Euclid's Elements of Geometry
P. 19

ST	EW      aþ.      idþ                                                     ELEMENTS BOOK 1













                                      .
                                                                                 Proposition 14
               ᾿Εὰν πρός τινι εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ δύο   If two straight-lines, not lying on the same side, make
            εὐθεῖαι μὴ ἐπὶ τὰ αὐτὰ μέρη κείμεναι τὰς ἐφεξῆς γωνίας  adjacent angles (whose sum is) equal to two right-angles
            δυσὶν ὀρθαῖς ἴσας ποιῶσιν, ἐπ᾿ εὐθείας ἔσονται ἀλλήλαις αἱ with some straight-line, at a point on it, then the two
            εὐθεῖαι.                                            straight-lines will be straight-on (with respect) to one an-
                                                                other.
                        Α                           Ε                      A                            E













                    Γ              Β                ∆                   C              B               D
               Πρὸς γάρ τινι εὐθείᾳ τῇ ΑΒ καὶ τῷ πρὸς αὐτῇ σημείῳ  For let two straight-lines BC and BD, not lying on the
            τῷ Β δύο εὐθεῖαι αἱ ΒΓ, ΒΔ μὴ ἐπὶ τὰ αὐτὰ μέρη κείμεναι same side, make adjacent angles ABC and ABD (whose
            τὰς ἐφεξῆς γωνίας τὰς ὑπὸ ΑΒΓ, ΑΒΔ δύο ὀρθαῖς ἴσας sum is) equal to two right-angles with some straight-line
            ποιείτωσαν· λέγω, ὅτι ἐπ᾿ εὐθείας ἐστὶ τῇ ΓΒ ἡ ΒΔ.  AB, at the point B on it. I say that BD is straight-on with
               Εἰ γὰρ μή ἐστι τῇ ΒΓ ἐπ᾿ εὐθείας ἡ ΒΔ, ἔστω τῇ ΓΒ  respect to CB.
            ἐπ᾿ εὐθείας ἡ ΒΕ.                                      For if BD is not straight-on to BC then let BE be
               ᾿Επεὶ οὖν εὐθεῖα ἡ ΑΒ ἐπ᾿ εὐθεῖαν τὴν ΓΒΕ ἐφέστηκεν, straight-on to CB.
            αἱ ἄρα ὑπὸ ΑΒΓ, ΑΒΕ γωνίαι δύο ὀρθαῖς ἴσαι εἰσίν· εἰσὶ δὲ  Therefore, since the straight-line AB stands on the
            καὶ αἱ ὑπὸ ΑΒΓ, ΑΒΔ δύο ὀρθαῖς ἴσαι· αἱ ἄρα ὑπὸ ΓΒΑ, straight-line CBE, the (sum of the) angles ABC and
            ΑΒΕ ταῖς ὑπὸ ΓΒΑ, ΑΒΔ ἴσαι εἰσίν. κοινὴ ἀφῃρήσθω ἡ  ABE is thus equal to two right-angles [Prop. 1.13]. But
            ὑπὸ ΓΒΑ· λοιπὴ ἄρα ἡ ὑπὸ ΑΒΕ λοιπῇ τῇ ὑπὸ ΑΒΔ ἐστιν (the sum of) ABC and ABD is also equal to two right-
            ἴση, ἡ ἐλάσσων τῇ μείζονι· ὅπερ ἐστὶν ἀδύνατον. οὐκ ἄρα angles. Thus, (the sum of angles) CBA and ABE is equal
            ἐπ᾿ εὐθείας ἐστὶν ἡ ΒΕ τῇ ΓΒ. ὁμοίως δὴ δείξομεν, ὅτι οὐδὲ to (the sum of angles) CBA and ABD [C.N. 1]. Let (an-
            ἄλλη τις πλὴν τῆς ΒΔ· ἐπ᾿ εὐθείας ἄρα ἐστὶν ἡ ΓΒ τῇ ΒΔ. gle) CBA have been subtracted from both. Thus, the re-
               ᾿Εὰν ἄρα πρός τινι εὐθείᾳ καὶ τῷ πρὸς αὐτῇ σημείῳ mainder ABE is equal to the remainder ABD [C.N. 3],
            δύο εὐθεῖαι μὴ ἐπὶ αὐτὰ μέρη κείμεναι τὰς ἐφεξῆς γωνίας  the lesser to the greater. The very thing is impossible.
            δυσὶν ὀρθαῖς ἴσας ποιῶσιν, ἐπ᾿ εὐθείας ἔσονται ἀλλήλαις αἱ Thus, BE is not straight-on with respect to CB. Simi-
            εὐθεῖαι· ὅπερ ἔδει δεῖξαι.                          larly, we can show that neither (is) any other (straight-
                                    ieþ                         make adjacent angles (whose sum is) equal to two right-
                                                                line) than BD. Thus, CB is straight-on with respect to
                                                                BD.
                                                                   Thus, if two straight-lines, not lying on the same side,

                                                                angles with some straight-line, at a point on it, then the
                                                                two straight-lines will be straight-on (with respect) to
                                                                one another. (Which is) the very thing it was required
                                                                to show.

                                                                                 Proposition 15
                                      .
               ᾿Εὰν δύο εὐθεῖαι τέμνωσιν ἀλλήλας, τὰς κατὰ κορυφὴν  If two straight-lines cut one another then they make
            γωνίας ἴσας ἀλλήλαις ποιοῦσιν.                      the vertically opposite angles equal to one another.


                                                              19
   14   15   16   17   18   19   20   21   22   23   24