Page 471 - Jolliffe I. Principal Component Analysis
P. 471
References
436
Huber, P.J. (1985). Projection pursuit. Ann. Statist., 13, 435–475 (includ-
ing discussion).
Hudlet, R. and Johnson, R.A. (1982). An extension of some optimal
properties of principal components. Ann. Inst. Statist. Math., 34,
105–110.
Huettmann, F. and Diamond, A.W. (2001). Using PCA scores to clas-
sify species communities: An example for pelagic seabird distribution. J.
Appl. Statist., 28, 843–853.
Hunt, A. (1978). The elderly at home. OPCS Social Survey Division,
Publication SS 1078. London: HMSO.
Ibazizen, M. (1986). Contribution de l’´etude d’une Analyse en Composantes
Principales Robuste. Unpublished Ph.D. thesis. Universit´e Paul Sabatier
de Toulouse.
Ichino, M. and Yaguchi, H. (1994). Generalized Minkowski matrices for
mixed feature-type data analysis. IEEE Trans. Syst. Man Cybernet., 24,
698–708.
Iglarsh, H.J. and Cheng, D.C. (1980). Weighted estimators in regression
with multicollinearity. J. Statist. Computat. Simul., 10, 103–112.
Imber, V. (1977). A classification of the English personal social services au-
thorities. DHSS Statistical and Research Report Series. No. 16. London:
HMSO.
Jackson, D.A. (1993). Stopping rules in principal components analysis: A
comparison of heuristical and statistical approaches. Ecology, 74, 2204–
2214.
Jackson, J.E. (1981). Principal components and factor analysis: Part III—
What is factor analysis? J. Qual. Tech., 13, 125–130.
Jackson, J.E. (1991). A User’s Guide to Principal Components. New York:
Wiley.
Jackson, J.E. and Hearne, F.T. (1973). Relationships among coefficients of
vectors used in principal components. Technometrics, 15, 601–610.
Jackson, J.E. and Hearne, F.T. (1979). Hotelling’s T 2 for principal
M
components—What about absolute values? Technometrics, 21, 253–255.
Jackson, J.E. and Mudholkar, G.S. (1979). Control procedures for residuals
associated with principal component analysis. Technometrics, 21, 341–
349.
James, G.M., Hastie, T.J. and Sugar, C.A. (2000). Principal component
models for sparse functional data. Biometrika, 87, 587–602.
Jaupi, L. and Saporta, G. (1993). Using the influence function in robust
principal components analysis. In New Directions in Statistical Data
Analysis and Robustness, eds. S. Morgenthaler, E. Ronchetti and W.A.
Stahel, 147–156. Basel: Birkh¨auser.
Jeffers, J.N.R. (1962). Principal component analysis of designed experi-
ment. Statistician, 12, 230–242.
Jeffers, J.N.R. (1967). Two case studies in the application of principal
component analysis. Appl. Statist., 16, 225–236.

