Page 469 - Jolliffe I. Principal Component Analysis
P. 469

References
                              434
                              Hasselmann, K. (1988). PIPs and POPs: The reduction of complex dy-
                                namical systems using principal interaction and oscillation patterns. J.
                                Geophys. Res., 93, 11,015–11,021.
                              Hastie, T. and Stuetzle, W. (1989). Principal curves. J. Amer. Statist.
                                Assoc., 84, 502–516.
                              Hastie, T., Tibshirani, R., Eisen, M.B., Alizadeh, A., Levy, R., Staudt,
                                L., Chan, W.C., Botstein, D. and Brown, P. (2000). ‘Gene shaving’ as
                                a method for identifying distinct sets of genes with similar expression
                                patterns. Genome Biol., 1, research 0003.1–003.21.
                              Hausmann, R. (1982). Constrained multivariate analysis. In Optimisation
                                in Statistics, eds. S.H. Zanckis and J.S. Rustagi, 137–151. Amsterdam:
                                North-Holland.
                              Hawkins, D.M. (1973). On the investigation of alternative regressions by
                                principal component analysis. Appl. Statist., 22, 275–286.
                              Hawkins, D.M. (1974). The detection of errors in multivariate data using
                                principal components. J. Amer. Statist. Assoc., 69, 340–344.
                              Hawkins, D.M. (1980). Identification of Outliers. London: Chapman and
                                Hall.
                              Hawkins, D.M. and Eplett, W.J.R. (1982). The Cholesky factorization
                                of the inverse correlation or covariance matrix in multiple regression.
                                Technometrics, 24, 191–198.
                              Hawkins, D.M. and Fatti, L.P. (1984). Exploring multivariate data using
                                the minor principal components. Statistician, 33, 325–338.
                              Helland, I.S. (1988). On the structure of partial least squares regression.
                                Commun. Statist.—Simul., 17, 581–607.
                              Helland, I.S. (1990). Partial least squares regression and statistical models.
                                Scand. J. Statist., 17, 97–114.
                              Helland, I.S. and Almøy, T. (1994). Comparison of prediction methods
                                when only a few components are relevant. J. Amer. Statist. Assoc., 89,
                                583–591 (correction 90, 399).
                              Heo, M. and Gabriel, K.R. (2001). The fit of graphical displays to patterns
                                of expectations. Computat. Statist. Data Anal., 36, 47-67.
                              Hill, R.C., Fomby, T.B. and Johnson, S.R. (1977). Component selection
                                norms for principal components regression. Commun. Statist., A6, 309–
                                334.
                              Hills, M. (1982). Allometry. In Encyclopedia of Statistical Sciences Vol 1,
                                eds. S. Kotz and N.L. Johnson, 48–54. New York: Wiley.
                              Hoaglin, D.C., Mosteller, F. and Tukey, J.W. (1983). Understanding Robust
                                and Exploratory Data Analysis. New York: Wiley.
                              Hocking, R.R. (1976). The analysis and selection of variables in linear
                                regression. Biometrics, 32, 1–49.
                              Hocking, R.R. (1984). Discussion of ‘K-clustering as a detection tool
                                for influential subsets in regression’ by J.B. Gray and R.F. Ling.
                                Technometrics, 26, 321–323.
   464   465   466   467   468   469   470   471   472   473   474