Page 469 - Jolliffe I. Principal Component Analysis
P. 469
References
434
Hasselmann, K. (1988). PIPs and POPs: The reduction of complex dy-
namical systems using principal interaction and oscillation patterns. J.
Geophys. Res., 93, 11,015–11,021.
Hastie, T. and Stuetzle, W. (1989). Principal curves. J. Amer. Statist.
Assoc., 84, 502–516.
Hastie, T., Tibshirani, R., Eisen, M.B., Alizadeh, A., Levy, R., Staudt,
L., Chan, W.C., Botstein, D. and Brown, P. (2000). ‘Gene shaving’ as
a method for identifying distinct sets of genes with similar expression
patterns. Genome Biol., 1, research 0003.1–003.21.
Hausmann, R. (1982). Constrained multivariate analysis. In Optimisation
in Statistics, eds. S.H. Zanckis and J.S. Rustagi, 137–151. Amsterdam:
North-Holland.
Hawkins, D.M. (1973). On the investigation of alternative regressions by
principal component analysis. Appl. Statist., 22, 275–286.
Hawkins, D.M. (1974). The detection of errors in multivariate data using
principal components. J. Amer. Statist. Assoc., 69, 340–344.
Hawkins, D.M. (1980). Identification of Outliers. London: Chapman and
Hall.
Hawkins, D.M. and Eplett, W.J.R. (1982). The Cholesky factorization
of the inverse correlation or covariance matrix in multiple regression.
Technometrics, 24, 191–198.
Hawkins, D.M. and Fatti, L.P. (1984). Exploring multivariate data using
the minor principal components. Statistician, 33, 325–338.
Helland, I.S. (1988). On the structure of partial least squares regression.
Commun. Statist.—Simul., 17, 581–607.
Helland, I.S. (1990). Partial least squares regression and statistical models.
Scand. J. Statist., 17, 97–114.
Helland, I.S. and Almøy, T. (1994). Comparison of prediction methods
when only a few components are relevant. J. Amer. Statist. Assoc., 89,
583–591 (correction 90, 399).
Heo, M. and Gabriel, K.R. (2001). The fit of graphical displays to patterns
of expectations. Computat. Statist. Data Anal., 36, 47-67.
Hill, R.C., Fomby, T.B. and Johnson, S.R. (1977). Component selection
norms for principal components regression. Commun. Statist., A6, 309–
334.
Hills, M. (1982). Allometry. In Encyclopedia of Statistical Sciences Vol 1,
eds. S. Kotz and N.L. Johnson, 48–54. New York: Wiley.
Hoaglin, D.C., Mosteller, F. and Tukey, J.W. (1983). Understanding Robust
and Exploratory Data Analysis. New York: Wiley.
Hocking, R.R. (1976). The analysis and selection of variables in linear
regression. Biometrics, 32, 1–49.
Hocking, R.R. (1984). Discussion of ‘K-clustering as a detection tool
for influential subsets in regression’ by J.B. Gray and R.F. Ling.
Technometrics, 26, 321–323.

