Page 473 - Jolliffe I. Principal Component Analysis
P. 473

References
                              438
                              Jolliffe, I.T., Jones, B. and Morgan, B.J.T. (1982b). Utilising clusters: A
                                case study involving the elderly. J. R. Statist. Soc. A, 145, 224–236.
                              Jolliffe, I.T., Jones, B. and Morgan, B.J.T. (1986). Comparison of cluster
                                analyses of the English personal social services authorities. J. R. Statist.
                                Soc. A, 149, 253–270.
                              Jolliffe, I.T., Morgan, B.J.T. and Young, P.J. (1996). A simulation study of
                                the use of principal components in linear discriminant analysis. J. Statist.
                                Comput. Simul., 55, 353–366.
                              Jolliffe I.T., Trendafilov, N.T. and Uddin, M. (2002a). A modified principal
                                component technique based on the LASSO. Submitted for publication.
                              Jolliffe, I.T. and Uddin, M. (2000). The simplified component technique.
                                An alternative to rotated principal components. J. Computat. Graph.
                                Statist., 9, 689–710.
                              Jolliffe I.T., Uddin, M and Vines, S.K. (2002b). Simplified EOFs. Three
                                alternatives to rotation. Climate Res., 20, 271–279.
                              Jones, M.C. and Sibson, R. (1987). What is projection pursuit? J. R.
                                Statist. Soc., A, 150, 1–38 (including discussion).
                              Jones, P.D., Wigley, T.M.L. and Briffa, K.R. (1983). Reconstructing surface
                                pressure patterns using principal components regression on tempera-
                                ture and precipitation data. Second International Meeting on Statistical
                                Climatology, Preprints volume. 4.2.1–4.2.8.
                              Jong, J.-C. and Kotz, S. (1999). On a relation between principal
                                components and regression analysis. Amer. Statistician, 53, 349–351.
                              Jordan, M.C. (1874). M´emoire sur les Formes Bilin´eaires. J. Math. Pures
                                Appl., 19, 35–54.
                              Jungers, W.L., Falsetti, A.B. and Wall, C.E. (1995). Shape, relative
                                size, and size-adjustments in morphometrics. Yearbook of Physical
                                Anthropology, 38, 137–161.
                              Kaciak, E. and Sheahan, J.N. (1988). Market segmentation: An alternative
                                principal components approach. In Marketing 1998, Volume 9, Proceed-
                                ings of the Annual Conference of the Administrative Sciences Association
                                of Canada—Marketing Division, ed. T. Barker, 139–148.
                              Kaigh, W.D. (1999). Total time on test function principal components.
                                Stat. and Prob. Lett., 44, 337–341.
                              Kaiser, H.F. (1960). The application of electronic computers to factor
                                analysis. Educ. Psychol. Meas., 20, 141–151.
                              Kambhatla, N. and Leen, T.K. (1997). Dimension reduction by local
                                principal component analysis. Neural Computat., 9, 1493–1516.
                              Kaplan, A., Cane, M.A. and Kushnir, Y. (2001). Reduced space approach to
                                the optimal analysis of historical marine observations: Accomplishments,
                                difficulties and prospects. WMO Guide to the Applications of Marine
                                Climatology. Geneva: World Meteorological Organization.
                              Karl, T.R., Koscielny, A.J. and Diaz, H.F. (1982). Potential errors in the
                                application of principal component (eigenvector) analysis to geophysical
                                data. J. Appl. Meteorol., 21, 1183–1186.
   468   469   470   471   472   473   474   475   476   477   478