Page 474 - Jolliffe I. Principal Component Analysis
P. 474

439
                                                                               References
                              Kazi-Aoual, F., Sabatier, R. and Lebreton, J.-D. (1995). Approximation
                                of permutation tests for multivariate inference—application to species
                                environment relationships. In Data Science and Its Application, eds. Y.
                                Escoufier, B. Fichet, E. Diday, L. Lebart, C. Hayashi, N. Ohsumi and Y.
                                Baba, 51–62. Tokyo: Academic Press.
                              Kazmierczak, J.B. (1985). Analyse logarithmique deux exemples d’appli-
                                cation. Rev. Statistique Appliqu´ee, 33, 13–24.
                              Kendall, D.G. (1984). Shape-manifolds, procrustean matrices and complex
                                projective spaces. Bull. Lond. Math. Soc., 16, 81–121.
                              Kendall, M.G. (1957). A Course in Multivariate Analysis. London: Griffin.
                              Kendall, M.G. (1966). Discrimination and classification. In Multivariate
                                Analysis, ed. P. R. Krishnaiah, 165–185. New York: Academic Press.
                              Kendall, M.G. and Stuart, A. (1979). The Advanced Theory of Statistics,
                                Vol. 2, 4th edition. London: Griffin.
                              Kent, J.T. (1994). The complex Bingham distribution and shape analysis.
                                J. R. Statist. Soc. B, 56, 285–299.
                              Keramidas, E.M., Devlin, S.J. and Gnanadesikan, R. (1987). A graphical
                                procedure for comparing the principal components of several covariance
                                matrices. Commun. Statist.-Simul., 16, 161–191.
                              Kiers, H.A.L. (1993). A comparison of techniques for finding components
                                with simple structure. In Multivariate Analysis: Future Directions 2, eds.
                                C.M. Cuadras and C.R. Rao, 67–86. Amsterdam: North-Holland.
                              Kim, K.-Y. and Wu, Q. (1999). A comparison study of EOF techniques:
                                analysis of nonstationary data with periodic statistics. J. Climate, 12,
                                185–199.
                              King, J.R. and Jackson, D.A. (1999). Variable selection in large environ-
                                mental data sets using principal components analysis. Environmetrics,
                                10, 67–77.
                              Klink K. and Willmott, C.J. (1989). Principal components of the surface
                                wind field in the United States: A comparison of analyses based upon
                                wind velocity, direction, and speed. Int. J. Climatol., 9, 293–308.
                              Kloek, T. and Mennes, L.B.M. (1960). Simultaneous equations esti-
                                mation based on principal components of predetermined variables.
                                Econometrica, 28, 45–61.
                              Kneip, A. (1994). Nonparametric estimation of common regressors for
                                similar curve data. Ann. Statist., 22, 1386–1427.
                              Kneip, A. and Utikal, K.J. (2001). Inference for density families using
                                functional principal component analysis. J. Amer. Statist. Assoc., 96,
                                519–542 (including discussion).
                              Konishi, S. and Rao, C.R. (1992). Principal component analysis for
                                multivariate familial data. Biometrika, 79, 631–641.
                              Kooperberg, C. and O’Sullivan, F. (1994). The use of a statistical fore-
                                cast criterion to evaluate alternative empirical spatial oscillation pattern
                                decomposition methods in climatological fields. Technical report 276,
                                Department of Statistics, University of Washington, Seattle.
   469   470   471   472   473   474   475   476   477   478   479