Page 480 - Jolliffe I. Principal Component Analysis
P. 480
Monahan, A.H., Tangang, F.T. and Hsieh, W.W. (1999). A potential prob-
lem with extended EOF analysis of standing wave fields. Atmos.–Ocean,
37, 241–254. References 445
Mori, Y., Iizuka, M., Tarumi, T. and Tanaka, Y. (1999). Variable selection
in “principal component analysis based on a subset of variables”. Bul-
letin of the International Statistical Institute 52nd Session Contributed
Papers, Tome LVIII, Book 2, 333–334.
Mori, Y., Iizuka, M., Tarumi, T. and Tanaka, Y. (2000). Study of variable
selection criteria in data analysis. Proc. 10th Japan and Korea Joint
Conference of Statistics, 547–554.
Mori, Y., Tanaka, Y. and Tarumi, T. (1998). Principal component analysis
based on a subset of variables for qualitative data. In Data Science,
Classification, and Related Methods, eds. C. Hayashi, N. Ohsumi, K.
Yajima, Y. Tanaka, H.H. Bock and Y. Baba, 547–554. Tokyo: Springer-
Verlag.
Morgan, B.J.T. (1981). Aspects of QSAR: 1. Unpublished report, CSIRO
Division of Mathematics and Statistics, Melbourne.
Morrison, D.F. (1976). Multivariate Statistical Methods, 2nd edition. Tokyo:
McGraw-Hill Kogakusha.
Moser, C.A. and Scott, W. (1961). British Towns. Edinburgh: Oliver and
Boyd.
Mosteller, F. and Tukey, J.W. (1977). Data Analysis and Regression: A
Second Course in Statistics. Reading, MA: Addison-Wesley.
Mote, P.W., Clark, H.L., Dunkerton, T.J., Harwood, R.S., and Pumphrey,
H.C. (2000). Intraseasonal variations of water vapor in the tropical upper
troposphere and tropopause region. J. Geophys. Res., 105, 17457–17470.
Muller, K.E. (1981). Relationships between redundancy analysis, canonical
correlation and multivariate regression. Psychometrika, 46, 139–142.
Muller, K.E. (1982). Understanding canonical correlation through the gen-
eral linear model and principal components. Amer. Statistician, 36,
342–354.
Naes, T. (1985). Multivariate calibration when the error covariance matrix
is structured. Technometrics, 27, 301–311.
Naes, T. and Helland, I.S. (1993). Relevant components in regression.
Scand. J. Statist., 20, 239–250.
Naes, T., Irgens, C. and Martens, H. (1986). Comparison of linear statistical
methods for calibration of NIR instruments. Appl. Statist., 35, 195–206.
Naes, T. and Isaksson, T. (1991). Splitting of calibration data by cluster
analysis. J. Chemometrics, 5, 49–65.
Naes, T. and Isaksson, T. (1992). Locally weighted regression in diffuse
near-infrared transmittance spectroscopy. Appl. Spectroscopy, 46, 34–43.
Naga, R.A. and Antille, G. (1990). Stability of robust and non-robust
principal components analysis. Computat. Statist. Data Anal., 10,
169–174.

