Page 479 - Jolliffe I. Principal Component Analysis
P. 479

References
                              444
                              McCabe, G.P. (1982). Principal variables. Technical Report No. 82–3,
                                Department of Statistics, Purdue University.
                              McCabe, G.P. (1984). Principal variables. Technometrics, 26, 137–144.
                              McCabe, G.P. (1986). Prediction of principal components by variable sub-
                                sets. Unpublished Technical Report, 86-19, Department of Statistics,
                                Purdue University.
                              McGinnis, D.L. (2000). Synoptic controls on upper Colorado River Basin
                                snowfall. Int. J. Climatol., 20, 131–149.
                              McLachlan, G.J. (1992). Discriminant Analysis and Statistical Pattern
                                Recognition. New York: Wiley.
                              McLachlan, G.J. and Bashford, K.E. (1988) Mixture Models. Inference and
                                Applications to Clustering. New York: Marcel Dekker.
                              McReynolds, W.O. (1970). Characterization of some liquid phases. J.
                                Chromatogr. Sci., 8, 685–691.
                              Mehrotra, D.V. (1995). Robust elementwise estimation of a dispersion
                                matrix. Biometrics, 51, 1344–1351.
                              Meredith, W. and Millsap, R.E. (1985). On component analysis. Psychome-
                                trika, 50, 495–507.
                              Mertens, B.J.A. (1998). Exact principal component influence measures ap-
                                plied to the analysis of spectroscopic data on rice. Appl. Statist., 47,
                                527–542.
                              Mertens, B., Fearn, T. and Thompson, M. (1995). The efficient cross-
                                validation of principal components applied to principal component
                                regression. Statist. Comput., 5, 227–235.
                              Mertens, B., Thompson, M. and Fearn, T. (1994). Principal component
                                outlier detection and SIMCA: A synthesis. Analyst, 119, 2777–2784.
                              Mestas-Nu˜nez, A.M. (2000). Orthogonality properties of rotated empirical
                                modes. Int. J. Climatol., 20, 1509–1516.
                              Meulman, J. (1986). A Distance Approach to Nonlinear Multivariate
                                Analysis. Leiden: DSWO Press.
                              Michailidis, G. and de Leeuw, J. (1998). The Gifi system of descriptive
                                multivariate analysis. Statist. Sci., 13, 307–336.
                              Milan, L. and Whittaker, J. (1995). Application of the parametric bootstrap
                                to models that incorporate a singular value decomposition. Appl. Statist.,
                                44, 31–49.
                              Miller, A.J. (1984). Selection of subsets of regression variables (with
                                discussion). J. R. Statist. Soc. A, 147, 389–425.
                              Miller, A.J. (1990). Subset Selection in Regression. London: Chapman and
                                Hall.
                              Milliken, G.A. and Johnson, D.E. (1989). Analysis of Messy Data Vol. 2:
                                Nonreplicated Experiments. New York: Van Nostrand-Reinhold.
                              Monahan, A.H. (2001). Nonlinear principal component analysis: Tropical
                                Indo-Pacific sea surface temperature and sea level pressure. J. Climate,
                                14, 219–233.
   474   475   476   477   478   479   480   481   482   483   484