Page 482 - Jolliffe I. Principal Component Analysis
P. 482

447
                                                                               References
                              Pack, P., Jolliffe, I.T. and Morgan, B.J.T. (1988). Influential observations in
                                principal component analysis: A case study. J. Appl. Statist., 15, 39–52.
                              Pearce, S.C. and Holland, D.A. (1960). Some applications of multivariate
                                methods in botany. Appl. Statist., 9, 1–7.
                              Pearson, K. (1901). On lines and planes of closest fit to systems of points
                                in space. Phil. Mag. (6), 2, 559–572.
                              Pe˜na, D. and Box, G.E.P. (1987). Identifying a simplifying structure in
                                time series. J. Amer. Statist. Assoc., 82, 836–843.
                              Pe˜na, D. and Yohai, V. (1999). A fast procedure for outlier diagnostics in
                                large regression problems. J. Amer. Statist. Assoc., 94, 434–445.
                              Penny, K.I. and Jolliffe, I.T (2001). A comparison of multivariate outlier
                                detection methods for clinical laboratory safety data. Statistician, 50,
                                295-308.
                              Pla, L. (1991). Determining stratum boundaries with multivariate real
                                data. Biometrics, 47, 1409–1422.
                              Plaut, G. and Vautard, R. (1994). Spells of low-frequency oscillations and
                                weather regimes in the Northern Hemisphere. J. Atmos. Sci., 51, 210–
                                236.
                              Preisendorfer, R.W. (1981). Principal component analysis and applica-
                                tions. Unpublished lecture notes.Amer. Met. Soc. Workshop on Principal
                                Component Analysis, Monterey.
                              Preisendorfer, R.W. and Mobley, C.D. (1982). Data intercomparison
                                theory, I-V. NOAA Tech. Memoranda ERL PMEL Nos. 38–42.
                              Preisendorfer, R.W. and Mobley, C.D. (1988). Principal Component
                                Analysis in Meteorology and Oceanography. Amsterdam: Elsevier.
                              Press, S.J. (1972). Applied Multivariate Analysis. New York: Holt, Rinehart
                                and Winston.
                              Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992)
                                Numerical Recipes in C, 2nd edition. Cambridge: Cambridge University
                                Press.
                              Priestley, M.B., Subba Rao, T. and Tong, H. (1974). Applications of
                                principal component analysis and factor analysis in the identifica-
                                tion of multivariable systems. IEEE Trans. Autom. Cont., AC-19,
                                730–734.
                              Qian, G., Gabor, G. and Gupta, R.P. (1994). Principal components selec-
                                tion by the criterion of the minimum mean difference of complexity. J.
                                Multiv. Anal., 49, 55–75.
                              Radhakrishnan, R. and Kshirsagar, A.M. (1981). Influence functions for
                                certain parameters in multivariate analysis. Commun. Statist., A10,
                                515–529.
                              Ramsay, J.O. (1996). Principal differential analysis: Data reduction by
                                differential operators. J. R. Statist. Soc. B, 58, 495–508.
                              Ramsay, J.O. (2000). Functional components of variation in handwriting.
                                J. Amer. Statist. Assoc., 95, 9–15.
   477   478   479   480   481   482   483   484   485   486   487