Page 482 - Jolliffe I. Principal Component Analysis
P. 482
447
References
Pack, P., Jolliffe, I.T. and Morgan, B.J.T. (1988). Influential observations in
principal component analysis: A case study. J. Appl. Statist., 15, 39–52.
Pearce, S.C. and Holland, D.A. (1960). Some applications of multivariate
methods in botany. Appl. Statist., 9, 1–7.
Pearson, K. (1901). On lines and planes of closest fit to systems of points
in space. Phil. Mag. (6), 2, 559–572.
Pe˜na, D. and Box, G.E.P. (1987). Identifying a simplifying structure in
time series. J. Amer. Statist. Assoc., 82, 836–843.
Pe˜na, D. and Yohai, V. (1999). A fast procedure for outlier diagnostics in
large regression problems. J. Amer. Statist. Assoc., 94, 434–445.
Penny, K.I. and Jolliffe, I.T (2001). A comparison of multivariate outlier
detection methods for clinical laboratory safety data. Statistician, 50,
295-308.
Pla, L. (1991). Determining stratum boundaries with multivariate real
data. Biometrics, 47, 1409–1422.
Plaut, G. and Vautard, R. (1994). Spells of low-frequency oscillations and
weather regimes in the Northern Hemisphere. J. Atmos. Sci., 51, 210–
236.
Preisendorfer, R.W. (1981). Principal component analysis and applica-
tions. Unpublished lecture notes.Amer. Met. Soc. Workshop on Principal
Component Analysis, Monterey.
Preisendorfer, R.W. and Mobley, C.D. (1982). Data intercomparison
theory, I-V. NOAA Tech. Memoranda ERL PMEL Nos. 38–42.
Preisendorfer, R.W. and Mobley, C.D. (1988). Principal Component
Analysis in Meteorology and Oceanography. Amsterdam: Elsevier.
Press, S.J. (1972). Applied Multivariate Analysis. New York: Holt, Rinehart
and Winston.
Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992)
Numerical Recipes in C, 2nd edition. Cambridge: Cambridge University
Press.
Priestley, M.B., Subba Rao, T. and Tong, H. (1974). Applications of
principal component analysis and factor analysis in the identifica-
tion of multivariable systems. IEEE Trans. Autom. Cont., AC-19,
730–734.
Qian, G., Gabor, G. and Gupta, R.P. (1994). Principal components selec-
tion by the criterion of the minimum mean difference of complexity. J.
Multiv. Anal., 49, 55–75.
Radhakrishnan, R. and Kshirsagar, A.M. (1981). Influence functions for
certain parameters in multivariate analysis. Commun. Statist., A10,
515–529.
Ramsay, J.O. (1996). Principal differential analysis: Data reduction by
differential operators. J. R. Statist. Soc. B, 58, 495–508.
Ramsay, J.O. (2000). Functional components of variation in handwriting.
J. Amer. Statist. Assoc., 95, 9–15.

