Page 477 - Jolliffe I. Principal Component Analysis
P. 477

References
                              442
                              Lefkovitch, L.P. (1993). Concensus principal components. Biom. J., 35,
                                567–580.
                              Legates, D.R. (1991). The effect of domain shape on principal component
                                analyses. Int. J. Climatol., 11, 135-146.
                              Legates, D.R. (1993). The effect of domain shape on principal component
                                analyses: A reply. Int. J. Climatol., 13, 219–228.
                              Legendre, L. and Legendre, P. (1983). Numerical Ecology. Amsterdam:
                                Elsevier.
                              Lewis-Beck, M.S. (1994). Factor Analysis and Related Techniques. London:
                                Sage.
                              Li, G. and Chen, Z. (1985). Projection-pursuit approach to robust dis-
                                persion matrices and principal components: Primary theory and Monte
                                Carlo. J. Amer. Statist. Assoc., 80, 759–766 (correction 80, 1084).
                              Li, K.-C., Lue, H.-H. and Chen, C.-H. (2000). Interactive tree-structured
                                regression via principal Hessian directions. J. Amer. Statist. Assoc., 95,
                                547–560.
                              Little, R.J.A. (1988). Robust estimation of the mean and covariance matrix
                                from data with missing values. Appl. Statist., 37, 23–38.
                              Little, R.J.A. and Rubin, D.B. (1987). Statistical Analysis with Missing
                                Data. New York: Wiley.
                              Locantore, N., Marron, J.S., Simpson, D.G., Tripoli, N., Zhang, J.T. and
                                Cohen, K.L. (1999). Robust principal component analysis for functional
                                data. Test, 8, 1–73 (including discussion).
                              Lott, W.F. (1973). The optimal set of principal component restrictions on
                                a least squares regression. Commun. Statist., 2, 449–464.
                              Lu, J., Ko, D. and Chang, T. (1997). The standardized influence matrix
                                and its applications. J. Amer. Statist. Assoc., 92, 1572–1580.
                              Lynn, H.S. and McCulloch, C.E. (2000). Using principal component analy-
                                sis and correspondence analysis for estimation in latent variable models.
                                J. Amer. Statist. Assoc., 95, 561–572.
                              Macdonell, W.R. (1902). On criminal anthropometry and the identification
                                of criminals. Biometrika, 1, 177–227.
                              Mager, P.P. (1980a). Principal component regression analysis applied in
                                structure-activity relationships 2. Flexible opioids with unusually high
                                safety margin. Biom. J., 22, 535–543.
                              Mager, P.P. (1980b). Correlation between qualitatively distributed predict-
                                ing variables and chemical terms in acridine derivatives using principal
                                component analysis. Biom. J., 22, 813–825.
                              Mandel, J. (1971). A new analysis of variance model for non-additive data.
                                Technometrics, 13, 1–18.
                              Mandel, J. (1972). Principal components, analysis of variance and data
                                structure. Statistica Neerlandica, 26, 119–129.
                              Mandel, J. (1982). Use of the singular value decomposition in regression
                                analysis. Amer. Statistician, 36, 15–24.
   472   473   474   475   476   477   478   479   480   481   482