Page 488 - Jolliffe I. Principal Component Analysis
P. 488

Tenenbaum, J.B., de Silva, V. and Langford, J.C. (2000). A global geo-
                                metric framework for nonlinear dimensionality reduction. Science, 290,
                                2319–2323.                                     References   453
                              ter Braak, C.J.F. (1983). Principal components biplots and alpha and beta
                                diversity. Ecology, 64, 454–462.
                              ter Braak, C.J.F. and Looman, C.W.N. (1994). Biplots in reduced rank
                                regression. Biom. J., 36, 983–1003.
                              Timmerman, M.E. and Kiers, H.A.L. (2000). Three-mode principal com-
                                ponents analysis: Choosing the numbers of components and sensitivity
                                to local optima. Brit. J. Math. Stat. Psychol., 53, 1–16.
                              Thacker, W.C. (1996). Metric-based principal components: Data uncertain-
                                ties. Tellus, 48A, 584–592.
                              Thacker, W.C. (1999). Principal predictors. Int. J. Climatol., 19, 821–834.
                              Thurstone, L.L. (1931). Multiple factor analysis. Psychol. Rev., 38, 406–
                                427.
                              Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J.
                                R. Statist. Soc. B, 58, 267–288.
                              Tipping, M.E. and Bishop, C.M. (1999a). Probabilistic principal compo-
                                nent analysis. J. R. Statist. Soc. B, 61, 611–622.
                              Tipping, M.E. and Bishop, C.M. (1999b). Mixtures of probabilistic
                                principal component analyzers. Neural Computat., 11, 443–482.
                              Titterington, D.M., Smith, A.F.M. and Makov, U.E. (1985). Statistical
                                Analysis of Finite Mixture Distributions. New York: Wiley.
                              Townshend, J.R.G. (1984). Agricultural land-cover discrimination using
                                thematic mapper spectral bands. Int. J. Remote Sensing, 5, 681–698.
                              Torgerson, W.S. (1958). Theory and Methods of Scaling. New York: Wiley.
                              Tortora, R.D. (1980). The effect of a disproportionate stratified design on
                                principal component analysis used for variable elimination. Proceedings
                                of the Amer. Statist. Assoc. Section on Survey Research Methods, 746–
                                750.
                              Treasure, F.P. (1986). The geometry of principal components. Unpublished
                                essay. University of Cambridge.
                              Trenkler, D. and Trenkler, G. (1984). On the Euclidean distance between
                                biased estimators. Commun. Statist.—Theor. Meth., 13, 273–284.
                              Trenkler, G. (1980). Generalized mean squared error comparisons of biased
                                regression estimators. Commun. Statist., A9, 1247–1259.
                              Tryon, R.C. (1939). Cluster Analysis. Ann Arbor: Edwards Brothers.
                              Tucker, L.R. (1958). An inter-battery method of factor analysis. Psychome-
                                trika, 23, 111–136.
                              Tucker, L.R. (1966). Some mathematical notes on three-mode factor
                                analysis. Psychometrika, 31, 279–311.
                              Tukey, P.A. and Tukey, J.W. (1981). Graphical display of data sets in three
                                or more dimensions. Three papers in Interpreting Multivariate Data (ed.
                                V. Barnett), 189–275. Chichester: Wiley.
   483   484   485   486   487   488   489   490   491   492   493