Page 487 - Jolliffe I. Principal Component Analysis
P. 487

References
                              452
                              Takane, Y., Kiers, H.A.L. and de Leeuw, J. (1995). Component analysis
                                with different sets of constraints on different dimensions. Psychometrika,
                                60, 259–280.
                              Takane, Y. and Shibayama, T. (1991). Principal component analysis with
                                external information on both subjects and variables. Psychometrika, 56,
                                97–120.
                                                                                     2
                              Takemura, A. (1985). A principal decomposition of Hotelling’s T statistic.
                                In Multivariate Analysis VI, ed. P.R. Krishnaiah, 583–597. Amsterdam:
                                Elsevier.
                              Tan, S. and Mavrovouniotis, M.L. (1995). Reducing data dimensionality
                                through optimizing neural network inputs. AIChE J., 41, 1471–1480.
                              Tanaka, Y. (1983). Some criteria for variable selection in factor analysis.
                                Behaviormetrika, 13, 31–45.
                              Tanaka, Y. (1988). Sensitivity analysis in principal component analysis:
                                Influence on the subspace spanned by principal components. Commun.
                                Statist.—Theor. Meth., 17, 3157–3175.
                              Tanaka, Y. (1995). A general strategy of sensitivity analysis in multivari-
                                ate methods. In Data Science and Its Application, eds. Y. Escoufier,
                                B. Fichet, E. Diday, L. Lebart, C. Hayashi, N. Ohsumi and Y. Baba,
                                117–131. Tokyo: Academic Press.
                              Tanaka, Y. and Mori, Y. (1997). Principal component analysis based on a
                                subset of variables: Variable selection and sensitivity analysis. Amer. J.
                                Math. Manag. Sci., 17, 61–89.
                              Tanaka, Y. and Tarumi, T. (1985). Computational aspect of sensitivity
                                analysis in multivariate methods. Technical report No. 12. Okayama
                                Statisticians Group. Okayama, Japan.
                              Tanaka, Y. and Tarumi, T. (1986). Sensitivity analysis in multivariate
                                methods and its application. Proc. Second Catalan Int. Symposium on
                                Statistics, 335–338.
                              Tanaka, Y. and Tarumi, T. (1987). A numerical investigation of sensitivity
                                analysis in multivariate methods. Fifth International Symposium: Data
                                Analysis and Informatics, Tome 1, 237–247.
                              Tarpey, T. (1999). Self-consistency and principal component analysis. J.
                                Amer. Statist. Assoc., 94, 456–467.
                              Tarpey, T. (2000). Parallel principal axes. J. Mult. Anal., 75, 295–313.
                              ten Berge, J.M.F. and Kiers, H.A.L. (1996). Optimality criteria for prin-
                                cipal component analysis and generalizations. Brit. J. Math. Statist.
                                Psychol., 49, 335–345.
                              ten Berge, J.M.F. and Kiers, H.A.L. (1997). Are all varieties of PCA the
                                same? A reply to Cadima and Jolliffe. Brit. J. Math. Statist. Psychol.,
                                50, 367–368.
                              ten Berge, J.M.F. and Kiers, H.A.L. (1999). Retrieving the correlation ma-
                                trix from a truncated PCA solution: The inverse principal component
                                problem. Psychometrika, 64, 317–324.
   482   483   484   485   486   487   488   489   490   491   492