Page 489 - Jolliffe I. Principal Component Analysis
P. 489

References
                              454
                              Turner, N.E. (1998). The effect of common variance and structure pattern
                                on random data eigenvalues: implications for the accuracy of parallel
                                analysis. Educ. Psychol. Meas., 58, 541–568.
                              Uddin, M. (1999). Interpretation of Results from Simplified Principal
                                Components. Unpublished Ph.D. thesis. University of Aberdeen.
                              Underhill, L.G. (1990). The coefficient of variation biplot. J. Classific., 7,
                                241–256.
                              van de Geer, J.P. (1984). Linear relations among k sets of variables.
                                Psychometrika, 49, 79–94.
                              van de Geer, J.P. (1986). Introduction to Linear Multivariate Data
                                Analysis—Volume 2. Leiden: DSWO Press.
                              van den Brink, P.J. and ter Braak, C.J.F. (1999). Principal response
                                curves: Analysis of time-dependent multivariate responses of biological
                                community to stress. Environ. Toxicol. Chem., 18, 138–148.
                              van den Dool, H.M., Saha, S. and Johansson, ˚ A. (2000) Empirical
                                orthogonal teleconnections. J. Climate 13, 1421-1435.
                              van den Wollenberg, A.L. (1977). Redundancy analysis. An alternative for
                                canonical correlation analysis. Psychometrika, 42, 207–219.
                              van Rijckevorsel, J.L.A. (1988). Fuzzy coding and B-splines. In Compo-
                                nent and Correspondence Analysis. Dimension Reduction by Functional
                                Approximation, eds. J.L.A. van Rijckevorsel and J. de Leeuw, 33–54.
                                Chichester: Wiley.
                              Vargas-Guzm´an, J.A., Warrick, A.W. and Myers, D.E. (1999). Scale ef-
                                fect on principal component analysis for vector random functions. Math.
                                Geol., 31, 701–722.
                              Vautard, R. (1995). Patterns in time: SSA and MSSA. In Analysis of
                                Climate Variability: Applications of Statistical Techniques, eds. H. von
                                Storch and A. Navarra, 259–279. Berlin: Springer.
                              Velicer, W.F. (1976). Determining the number of components from the
                                matrix of partial correlations. Psychometrika, 41, 321–327.
                              Velicer, W.F. and Jackson, D.N. (1990). Component analysis versus com-
                                mon factor analysis—some issues in selecting an appropriate procedure.
                                Mult.Behav.Res., 25, 1–28.
                              Verboon, P. (1993). Stability of resistant principal component analysis for
                                qualitative data. In New Directions in Statistical Data Analysis and Ro-
                                bustness, eds. S. Morgenthaler, E. Ronchetti and W. A. Stahel, 265–273.
                                Basel: Birkh¨auser.
                              Vermeiren, D., Tavella, D. and Horovitz, A. (2001). Extending principal
                                component analysis to identify portfolio risk contributors. Submitted for
                                publication.
                              Vigneau, E. and Qannari, E.M. (2001). Clustering of variables around
                                latent components. Submitted for publication.
                              Vines, S.K. (2000). Simple principal components. Appl. Statist., 49, 441–
                                451.
   484   485   486   487   488   489   490   491   492   493   494