Page 489 - Jolliffe I. Principal Component Analysis
P. 489
References
454
Turner, N.E. (1998). The effect of common variance and structure pattern
on random data eigenvalues: implications for the accuracy of parallel
analysis. Educ. Psychol. Meas., 58, 541–568.
Uddin, M. (1999). Interpretation of Results from Simplified Principal
Components. Unpublished Ph.D. thesis. University of Aberdeen.
Underhill, L.G. (1990). The coefficient of variation biplot. J. Classific., 7,
241–256.
van de Geer, J.P. (1984). Linear relations among k sets of variables.
Psychometrika, 49, 79–94.
van de Geer, J.P. (1986). Introduction to Linear Multivariate Data
Analysis—Volume 2. Leiden: DSWO Press.
van den Brink, P.J. and ter Braak, C.J.F. (1999). Principal response
curves: Analysis of time-dependent multivariate responses of biological
community to stress. Environ. Toxicol. Chem., 18, 138–148.
van den Dool, H.M., Saha, S. and Johansson, ˚ A. (2000) Empirical
orthogonal teleconnections. J. Climate 13, 1421-1435.
van den Wollenberg, A.L. (1977). Redundancy analysis. An alternative for
canonical correlation analysis. Psychometrika, 42, 207–219.
van Rijckevorsel, J.L.A. (1988). Fuzzy coding and B-splines. In Compo-
nent and Correspondence Analysis. Dimension Reduction by Functional
Approximation, eds. J.L.A. van Rijckevorsel and J. de Leeuw, 33–54.
Chichester: Wiley.
Vargas-Guzm´an, J.A., Warrick, A.W. and Myers, D.E. (1999). Scale ef-
fect on principal component analysis for vector random functions. Math.
Geol., 31, 701–722.
Vautard, R. (1995). Patterns in time: SSA and MSSA. In Analysis of
Climate Variability: Applications of Statistical Techniques, eds. H. von
Storch and A. Navarra, 259–279. Berlin: Springer.
Velicer, W.F. (1976). Determining the number of components from the
matrix of partial correlations. Psychometrika, 41, 321–327.
Velicer, W.F. and Jackson, D.N. (1990). Component analysis versus com-
mon factor analysis—some issues in selecting an appropriate procedure.
Mult.Behav.Res., 25, 1–28.
Verboon, P. (1993). Stability of resistant principal component analysis for
qualitative data. In New Directions in Statistical Data Analysis and Ro-
bustness, eds. S. Morgenthaler, E. Ronchetti and W. A. Stahel, 265–273.
Basel: Birkh¨auser.
Vermeiren, D., Tavella, D. and Horovitz, A. (2001). Extending principal
component analysis to identify portfolio risk contributors. Submitted for
publication.
Vigneau, E. and Qannari, E.M. (2001). Clustering of variables around
latent components. Submitted for publication.
Vines, S.K. (2000). Simple principal components. Appl. Statist., 49, 441–
451.

