Page 491 - Jolliffe I. Principal Component Analysis
P. 491
References
456
Webster, J.T., Gunst, R.F. and Mason, R.L. (1974). Latent root regression
analysis. Technometrics, 16, 513–522.
White, D., Richman, M. and Yarnal, B. (1991). Climate regionalization
and rotation of principal components. Int. J. Climatol., 11, 1–25.
White, J.W. and Gunst, R.F. (1979). Latent root regression: Large sample
analysis. Technometrics, 21, 481–488.
Whittaker, J. (1990). Graphical Models in Applied Multivariate Analysis.
Chichester: Wiley.
Whittle, P. (1952). On principal components and least squares methods of
factor analysis. Skand. Actuar., 35, 223–239.
Wiberg, T. (1976). Computation of principal components when data are
missing. In Compstat 1976, eds. J. Gordesch and P. Naeve, 229–236.
Wien: Physica-Verlag.
Widaman, K.F. (1993). Common factor analysis versus principal compo-
nent analysis: Differential bias in representing model parameters. Mult.
Behav. Res., 28, 263–311.
Wigley, T.M.L., Lough, J.M. and Jones, P.D. (1984). Spatial patterns of
precipitation in England and Wales and a revised, homogeneous England
and Wales precipitation series. J. Climatol., 4, 1–25.
Wikle, C.K. and Cressie, N. (1999). A dimension-reduced approach to
space-time Kalman filtering. Biometrika, 86, 815–829.
Wilkinson, J.H. (1965). The Algebraic Eigenvalue Problem. Oxford: Oxford
University Press.
Wilkinson, J.H. and Reinsch, C. (1971). Handbook for Automatic Compu-
tation, Vol. 11, Linear Algebra. Berlin: Springer-Verlag.
Winsberg, S. (1988). Two techniques: Monotone spline transformations
for dimension reduction in PCA and easy-to generate metrics for
PCA of sampled functions. In Component and Correspondence Analy-
sis. Dimension Reduction by Functional Approximation, eds. J.L.A. van
Rijckevorsel and J. de Leeuw, 115–135. Chichester: Wiley.
Witten, I.H. and Frank, E. (2000). Data Mining. Practical Machine Learn-
ing Tools and Techniques with Java Implementations. San Francisco:
Morgan Kaufmann.
Wold, H. (1984). Partial least squares. In Encyclopedia of Statistical Sci-
ence, Vol 6, eds. N. L. Johnson and S. Kotz, 581–591. New York:
Wiley.
Wold, S. (1976). Pattern recognition by means of disjoint principal
components models. Patt. Recog., 8, 127–139.
Wold, S. (1978). Cross-validatory estimation of the number of components
in factor and principal components models. Technometrics, 20, 397–405.
Wold, S. (1994). Exponentially weighted moving principal components
analysis and projections to latent structures. Chemometrics Intell. Lab.
Syst., 23, 149–161.
Wold, S., Albano, C., Dunn, W.J., Esbensen, K., Hellberg, S., Johans-
son, E. and Sj¨ostr¨om, M. (1983). Pattern recognition: Finding and using

