Page 547 - Python Data Science Handbook
P. 547

Python vs. Pandas, 188-192           specialized ufuncs, 56
                  resampling and converting frequencies,  specifying output, 56
                    197-199                            trigonometric functions, 54
                  rolling statistics, 201            unstack() method, 130
                  Seattle bicycle counts example, 202-209  unsupervised learning
                  time-shifts, 199-201                 clustering, 338-339, 353
                  typed arrays, 189                    defined, 332
               Timedelta type, 193                     dimensionality reduction, 261, 340-342,
               Timestamp type, 193                        352, 355
               timestamps, indexing data by, 192       PCA (see principal component analysis)
               timing, of code, 12, 25-27
               transform() method, 167               V
               transforms                            validation (see model validation)
                  modifying, 270-272                 validation curves, 366-370
                  text position and, 270-272         variables
               triangulated surface plots, 295-298     dynamic typing, 34
               trigonometric functions, 54             passing to and from shell, 18
               tshift() function, 199-201            variance, in bias–variance trade-off, 364-366
               two-fold cross-validation, 361        vectorized operations, 63
                                                     vectorized string operations, 178-188
               U                                       basics, 178
               ufuncs (see universal functions)        indicator variables, 183
               unary ufuncs, 52                        methods similar to Python string methods,
               underfitting, 364, 371                     180
               underscore (_) shortcut, 15             methods using regular expressions, 181
               universal functions (ufuncs), 50-58     recipe database example, 184-188
                  absolute value, 54                   tables of, 180-184
                  advanced features, 56                vectorized item access and slicing, 183
                  aggregates, 57                     Vega/Vega-Lite, 330
                  array arithmetic, 52               violin plot, 327
                  basics, 51                         viridis colormap, 258
                  comparison operators as, 71-73     Vispy, 330
                  exponentials, 55                   visualization software (see Matplotlib) (see Sea‐
                  index alignment, 116-118             born)
                  index preservation, 115
                  logarithms, 55                     W
                  operating on data in Pandas, 115-127  Wickham, Hadley, 161
                  operations between DataFrame and Series,  wildcard matching, 7
                    118                              wireframe plot, 293
                  outer products, 58                 word counts, 377-378
                  slowness of Python loops, 50













                                                                              Index  |  529
   542   543   544   545   546   547   548