Page 545 - Python Data Science Handbook
P. 545

regular expressions, 181                constructing, 101
               regularization, 396-400                 data indexing/selection in, 107-110
                  lasso regularization, 399            DataFrame as dictionary of, 110-112
                  ridge regression, 398                DataFrame object constructed from, 104
               relational algebra, 146                 DataFrame object constructed from dictio‐
               resample() method, 197-199                 nary of, 105
               reset_index() method, 139               generalized NumPy array, 99
               reshaping, 47                           hierarchical indexing in, 128-141
               ridge regression (L2 regularization), 398  index alignment in, 116
               right join, 153                         indexer attributes, 109
               right_index keyword, 151-152            multiply indexed, 134
               rolling statistics, 201                 one-dimensional array, 108
               runtime configuration (rc), 284         operations between DataFrame and, 118
                                                     shell, IPython
               S                                       basics, 16
               scatter plots (see simple scatter plots)  command-line commands, 18
               Scikit-Learn package, 331, 343-346      commands, 16-19
                  API (see Estimator API)              keyboard shortcuts in, 8
                  basics, 343-359                      launching, 2
                  data as table, 343                   magic commands, 19
                  data representation in, 343-346      passing values to and from, 18
                  Estimator API, 346-354             shift() function, 199-201
                  features matrix, 344               shortcuts
                  handwritten digit application, 354-358  accessing previous output, 15
                  support vector classifier, 408-411   command history, 9
                  target array, 344-345                IPython shell, 8-31
               scipy.special submodule, 56             navigation, 8
               script                                  text entry, 9
                  plotting from, 219                 simple histograms, 245-246
                  profiling, 27                      simple line plots
               Seaborn                                 axes limits for, 228-230
                  bar plots, 321                       labeling, 230-232
                  datasets and plot types, 313-329     line colors and styles, 226-228
                  faceted histograms, 318              Matplotlib, 224-232
                  factor plots, 319                    simple (Matplotlib), 224-232
                  histograms, KDE, and densities, 314-317  simple linear regression, 390-392
                  joint distributions, 320           simple scatter plots
                  marathon finishing times example, 322-329  California city populations, 249-254
                  Matplotlib vs., 311-313              Matplotlib, 233-237
                  pair plots, 317                      plt.plot, 233-235
                  stylesheet, 289                      plt.plot vs. plt.scatter, 237
                  visualization with, 311-313          plt.scatter, 235-237
               Seattle, bicycle traffic prediction in  slice() operation, 183
                  linear regression, 400-405         slicing
                  time series, 202-209                 MultiIndex with sorted/unsorted indices,
               Seattle, rainfall statistics in, 70        137
               semi-supervised learning, 333           NumPy arrays, 44-47
               Series object (Pandas), 99-102          NumPy arrays: accessing subarrays, 44
                  as dictionary, 100, 107


                                                                              Index  |  527
   540   541   542   543   544   545   546   547   548