Page 544 - Python Data Science Handbook
P. 544

display contexts, 218-220            facial recognition example, 442-445
                  factor plots, 319                    for dimensionality reduction, 436
                  from an IPython shell, 219           handwritten digit example, 437-440,
                  from script, 219                        440-442
                  histograms, binnings, and density, 245-249  manifold learning vs., 455
                  IPython notebook, 220                meaning of components, 438-439
                  joint distributions, 320             noise filtering, 440-442
                  labeling simple line plots, 230-232  strengths/weaknesses, 445
                  line colors and styles, 226-228      visualization with, 437
                  manual customization, 282-284      profiling
                  Matplotlib, 217                      full scripts, 27
                  multiple subplots, 262-268           line-by-line, 28
                  of errors, 237-240                   memory use, 29
                  pair plots, 317                    projections (see map projections)
                  plot legends, 249-255              pseudo-cylindrical projections, 302
                  Seaborn, 311-313                   Python
                  simple line plots, 224-232           installation considerations, xiv
                  simple scatter plots, 233-237        Python 2.x vs. Python 3, xiii
                  stylesheets for, 285-290             reasons for using, xii
                  text and annotation for, 268-275
                  three-dimensional, 290-298         Q
                  three-dimensional function, 241-245  query() method
                  ticks, 275-282                       DataFrame.query() method, 213
                  two-dimensional function, 69         when to use, 214
                  various Python graphics libraries, 330  question mark (?), accessing IPython documen‐
               plt.axes() function, 263-264            tation with, 3
               plt.contour() function, 241-244       quicksort algorithm, 87
               plt.GridSpec() function, 266-268
               plt.imshow() function, 243-244        R
               plt.legend() command, 249-254
               plt.plot() function                   radial basis function, 412
                  color arguments, 226               rainfall statistics, 70
                  plt.scatter vs., 237               random forests
                  scatter plots with, 233-235          advantages/disadvantages, 432
               plt.scatter() function                  classifying digits with, 430-432
                  plt.plot vs., 237                    defined, 426
                  simple scatter plots with, 235-237   ensembles of estimators, 426-428
               plt.subplot() function, 264             motivating with decision trees, 421-426
               plt.subplots() function, 265            regression, 428
               polynomial basis functions, 393       RandomizedPCA, 442
               polynomial regression model, 366      rcParams dictionary, changing defaults via, 284
               pop() method, 111                     RdBu colormap, 258
               population data, US, merge and join operations  record arrays, 96
                  with, 154-158                      reduce() method, 57
               principal axes, 434-436               regression, 428-433
               principal component analysis (PCA), 433-515  (see also specific forms, e.g.: linear regres‐
                  basics, 433-442                         sion)
                  choosing number of components, 440  regression task
                  eigenfaces example, 442-445          defined, 332
                                                       machine learning, 335-338


               526  |  Index
   539   540   541   542   543   544   545   546   547   548